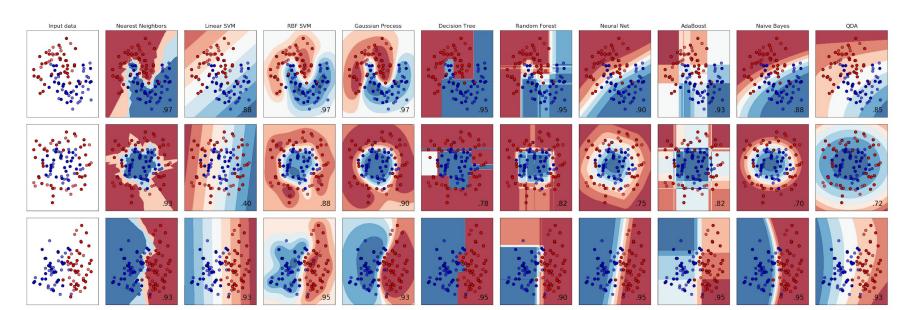


Model Selection in Machine Learning

Brendan Duke

Contents


- 1. Brief overview of model selection in machine learning
- 2. Gradient boosting (interactive playground)
- 3. Machine learning flowcharts
- 4. Learning to rank (Jupyter notebook)
- 5. Realtime vehicle detection with Dlib

Selecting a Model

- There are many different options:
 - Gradient Boosting
 - Random Forest
 - Linear Regression

- o SVM
- Naive Bayes
- Gaussian Process

- Nearest Neighbour
- LDA/QDA
- Neural Networks

Model Selection - Rule of Thumb

- Does the dataset contain tabular data (i.e. spreadsheet)?
 - Use gradient boosting or random forest
 - Works well for >90% of problems
 - XGBoost: the first model to try, and ultimately winning model, in Kaggle competitions
 - Feature engineering help: feature importance (https://bit.ly/2mdjOSd)

Carrier 🗢					6:52 PM			_	
	File	Edit	dit Graphs					1 (i)	
\oplus	А		В	С	D	E	F	G	
1	Date	Cate	egory	Description	Expense				
2	2014-11-18	Me	dical	Insurance	380.00		Categories	total	
3	2014-12-10	1	Т	Cellular	70.75		Medical	380	
4	2014-12-4	1	Т	Broadband	42.25		IT	113	
5	2014-12-27	Of	fice	Heating	33.36		Office	91.81	
6	2014-12-28	Of	Office Cleaning		45.00				
7	2014-12-29 O		fice	Electricity	13.45				
8									
9									

Gradient Boosting (Explanation)

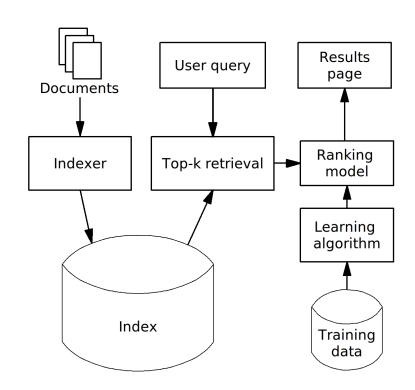
- Decision trees: classifier with trivial splitting (e.g., x < 2.4)
- Build a regression tree greedily, by splitting to minimize Mean Squared Error (MSE)
 - Fast algorithm, suboptimal results
- Gradient boosting: ensemble of decision trees. (N + 1)th tree minimizes the N-tree ensemble's residual error (or in general, negative gradient of loss).
- Explanation: https://bit.ly/2Jf9bao

Gradient Boosting (Interactive Playground)

- Underfitting vs. overfitting
- High training and test error, what can you do?
 - More powerful model/algorithm
- Low training, but high test error, what can you do?
 - Regularization
 - More data/data augmentation
 - Simpler model
- Playground: https://bit.ly/2JgaGoP

Model Selection - Rule of Thumb

- Does your dataset contain images, audio, time series, or text data?
 - Use neural networks, if the dataset is sufficiently large
 - Works well for problems that humans are generally good at



Model Selection – Flow Charts

- Sci-kit Learn: https://bit.ly/1lxDsim
- Dlib: http://dlib.net/ml_guide.svg

Learning to Rank

- We want to use machine learning to improve a search engine
- Two parts: top-k retrieval, and ranking of k retrieved documents
- Let's focus on the ranking model
- To the Jupyter notebook!
- https://github.com/dukebw/ml-modelselection

Realtime Vehicle Detection with Dlib

http://blog.dlib.net/2017/08/vehicle-detection-with-dlib-195_27.html