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THE ADVERSARIAL EXAMPLES PHENOMENON

Machine learning models generalize well to an unseen test set,
yet every input of a particular class is extremely close to an
input of another class.

“Accepted” informal definition:
Any input designed to fool a machine learning system.
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FORMAL DEFINITIONS

A “misclassification” adversarial candidate x̂ on a neural
network F with input x via some perturbation of x by δ:

x̂ = x + δ

where δ is usually derived from the gradient of the loss
∇L(θ, y, x) w.r.t x, and for some small scalar ε,

‖δ‖p ≤ ε, p ∈ {1, 2,∞}

such that
F(x) 6= F(x̂)
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GOODFELLOW ET AL. 2015

For input x ∈ Rn, there is an adversarial example x̃ = x + η
subject to the constraint ‖η‖∞ < ε. The dot product between a
weight vector w and an adversarial example x̃ is then:

wT · x̃ = wT · x + wT · η

If w has mean m, activation grows linearly with εm n . . .
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TANAY & GRIFFIN 2016

But both wT · x and wT · η grow linearly with dimension n,

provided that the distribution of w and x do not change.
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THE BOUNDARY TILTING PERSPECTIVE

Dense distribution 
of “low probability 
pockets”

Image space

(a)

           

Image space

The boundary is
“outside the box”

Submanifold of 
sampled data

(b)

Recall manifold learning hypothesis: training data
sub-manifold exists with finite topological dimension f 〈〈n.



INTRODUCTION Theory Trade-offs Practical Attacks DNNs

I i
J

j

m(i,C)m(I,C)C

(c)

I
i J

j = m(i,B) m(I,B) B

I
i J

m(i,C)
m(I,C) 

C

j

B

(d)



INTRODUCTION Theory Trade-offs Practical Attacks DNNs

TAXONOMY
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ATTACKING BINARIZED NEURAL NETWORKS

Batch
NormFull-Precision

Conv2D

tf.sign()

Binary Conv2D
ScalarReLUReLU

Batch
Norm

tf.sign()

The empirical observation that BNNs with low-precision
weights and activations are at least as robust as their
full-precision counter parts.
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ATTACKING BINARIZED NEURAL NETWORKS (2)

1. Regularizing effect due to decoupling between continuous
and quantized parameters used in forward pass, biased
gradient estimator (STE?)

2. Strikes better trade-off on IB curve in over-parameterized
regime by discarding irrelevant information.

(e) (f)
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WHY ONLY CONSIDER SMALL PERTURBATIONS?

Fault tolerant engineering design:

Want performance degradation to be proportional to
perturbation magnitude, regardless of an attacker’s strategy.
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HUMAN-DRIVEN ATTACKS

(g) (h)
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A PRACTICAL BLACK-BOX ATTACK
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TRADE-OFFS
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INTERPRETABILITY OF LOGISTIC REGRESSION
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CANDIDATE EXAMPLES

(o) (p) (q) (r) (s)



INTRODUCTION Theory Trade-offs Practical Attacks DNNs

CIFAR-10 ARCHITECTURE

Table: Simple fully-convolutional architecture adapted from the
CleverHans library. Model uses ReLU activations, and does not use
batch normalization or pooling.

Layer h w cin cout s params
Conv1 8 8 3 32 2 6.1k
Conv2 6 6 32 64 2 73.7k
Conv3 5 5 64 64 1 102.4k
Fc1 1 1 256 10 1 2.6k
Total – – – – – 184.8k

Model has 0.4% as many parameters as WideResNet.
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L∞ ADVERSARIAL EXAMPLES
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ROBUSTNESS
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NOISY EXAMPLES
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WITH L2 WEIGHT DECAY

The “independent components” of natural scenes are edge
filters (Bell & Sejnowski 1997).
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WITHOUT WEIGHT DECAY
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FOOLING IMAGES

4 years ago I didn’t think small-perturbation adversarial
examples were going to be so hard to solve. I thought after
another n months of working on those, I’d be basically done
with them and would move on to fooling attacks.

Deep Neural Networks are Easily Fooled: High Confidence
Predictions for Unrecognizable Images (CVPR 2015)
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FOOLING IMAGES (CIFAR-10)
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FOOLING IMAGES (SVHN)
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FOOLING IMAGES (SVHN)

Robust training procedure does not learn random labels (lower
Rademacher complexity).
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FOOLING IMAGES
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DIVIDE AND CONQUER?

Image from Dube (2018).
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REMARKS

I Test accuracy on popular ML benchmarks a weak measure
of generalization.

I Plethora of band-aid fixes to std DNNs do not yield
compelling results (e.g. provably robust framework).

I Incorporate expert knowledge, e.g. by excplicitly modeling
part-whole relationships, other priors that relate to the
known causal features such as edges in natural scenes.

I Good generalization implies some level of privacy, and
more “fair” models assuming original intent is fair.
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FUTURE WORK

Information bottleneck (IB) theory seems essential for
efficiently learning robust models from finite data. But why do
models with no bottleneck generalize well on common
machine learning datasets?

i-RevNet retains all information until final layer and achieves
high accuracy, but is extremely sensitive to adversarial
examples.


	Introduction
	Theory
	Trade-offs
	Practical Attacks
	DNNs

	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 


