Transfer Learning

B

9

Eu Wern Teh

What are we covering?

- Why transfer learning?
- Fine Tuning: how? why? Example
- Practise:
 - Ants and Bees dataset
 - Caltech 101 dataset

Why Transfer Learning?

- Speedup Training
- Improve generalization (especially: less data)
- Transfer Learning:
 - Fine Tuning
 - Domain Adaptation
 - train a model that does the same thing on different environment
 - eg: object classification on high vs low resolution image
 - eg: customer rating estimation on various domain (travel review vs hotel review)

Fine Tuning

- Most common form of transfer learning.
- Easy and Effective

Fine Tuning

- In practise, very few people train their model from scratch (with random weight initialization)
- Fine Tuning is achieved by initializing your model with weights train on another dataset:
 - ImageNet 2012 1000 classes and 1 millions images (1000 images per class)
 - VGG Faces dataset 2622 identities and 2.6 millions images (991 images per class)
- Learning rate manipulation during training
 - high vs low learning rate will affect the testing performance of your new dataset.
 - highly dependent on the size of dataset.

Why fine tuning works?

• Features or Pattern that are working for one dataset may be useful on some other dataset.

A series of stack layers that extracts increasingly abstract features from the image.

The higher the layers, the more abstract the features.

Lines \rightarrow Edges \rightarrow Shapes \rightarrow Object Parts $\rightarrow ...$

Deep Network

• ResNet architectures:

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
	56×56	3×3 max pool, stride 2					
conv2_x		$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128\\ 3 \times 3, 128\\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512\\ 3 \times 3, 512\\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\left[\begin{array}{c} 1 \times 1, 512\\ 3 \times 3, 512\\ 1 \times 1, 2048 \end{array}\right] \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^{9}	

Deep Network

• ResNet-18

Machine Learning Practitioner

Manipulate Learning Rate

 What features should we keep the most? (little to no change) what features should we adapt the most? (lots of change → adapt to dataset)

A series of stack layers that extracts increasingly abstract features from the image.

The higher the layers, the more abstract the features.

Lines \rightarrow Edges \rightarrow Shapes \rightarrow Object Parts $\rightarrow ...$

Manipulate Learning Rate

- If we have a small dataset, we would trust the lower level features from our pretrain model. (It has seen more lines, Edges, Shapes ...)
 - l ines? Output Edges? CAR PERSON ANIMAL (object identity) We trust it by not Shapes? changing the features too much \rightarrow 3rd hidden laver **Object Parts?** (object parts) low learning rate **Classifier?** 2nd hidden layer (corners and contours) 1st hidden laver (edges) Visible layer

(input pixels)

Deep Network

• ResNet-18

CIFAR 10 dataset

airplane automobile bird cat deer dog frog horse ship truck

aren

Created by: Alex Krizhevsky, 2009

60,000, 32x32 Color images.

6000 images per class

50,000 training 10,000 testing

Experiments on Fine Tuning on Cifar 10-4000

All models terminate at 100 epochs.

Models	Descriptions	Train Acc	Test Acc
Model A (no fine tuning)	set all Ir = 1e-1	99.98%	76.34%
Model B	set all Ir = 1e-1	99.61%	66.10%
Model A (no fine tuning)	set all Ir = 1e-4	44.97%	41.89%
Model B	set all Ir = 1e-4	92.04%	87.14%
Model C	set all features lr = 1e-4 set class lr = 1e-1	99.68%	88.72%

Experiments on Fine Tuning on Cifar 10-4000

All models terminate at 100 epochs.

Models	Descriptions	Train Acc	Test Acc
Model C	set all features lr = 1e-4 set class lr = 1e-1	99.68%	88.72%
Model D	set conv1, conv2 and conv3 lr = 1e-4 set conv4 and conv5 lr = 1e-3 set class lr = 1e-1	99.88%	89.65%

How to do it?

```
opt = optim.SGD([{'params':model.base[0].parameters(), 'lr': args.lr * 1e-3},
     {'params':model.base[4].parameters(), 'lr': args.lr * 1e-3},
     {'params':model.base[5].parameters(), 'lr': args.lr * 1e-3},
     {'params':model.base[6].parameters(), 'lr': args.lr * 1e-2},
     {'params':model.base[7].parameters(), 'lr': args.lr * 1e-2},
     {'params':model.fc1.parameters()}], lr=args.lr, momentum=0.9,
     nesterov=False, weight_decay=5e-4)
```

Freezing Learning Rate

- If you are setting your learning rate to zero on some layers, you should set the requires_grad attribute to False. (This allows you to save some memory and compute time).
 - for param in model.base.parameters():
 param.requires grad = False

Mean and Standard Deviation adjustment

- Feature Normalization
- you need to normalize your image with the mean and standard deviation of your pre-trained model
- If you fine-tune your network with ResNet model train on ImageNet in Pytorch model:
 - input needs to be scale from 0 to 255 to zero to one
 - the means of RGB: 0.485, 0.456, 0.406
 - the std of RGB: 0.229, 0.224, 0.225
 - <u>https://pytorch.org/docs/stable/torchvision/models.ht</u>ml
- if you fine-tune your network with ResNet model train on ImageNet in Caffe
 - you to load your image in BGR and inputs needs to be in 0 to 255
 - the means of BGR: 103.939, 116.779, 123.68
 - \circ do not need to divide by std.

Ants and Bees dataset

https://jupyter.co60.ca

- Small quantity of big resolution images.
- 398 images, 2 classes, (199 images per class)
- 10% training
- 10% validation
- 80% testing
- Random Chance: 50%
- Test Accuracy (base);
 60.13%
- Test Accuracy:(fine-tune)

86.71%

Caltech 101 dataset

- medium quantity of big resolution images.
- 9144 images, 102 classes, (89 images per class)
- 1% training
- 1% validation
- 98% testing
- random chance: ~1%
- Test Accuracy(base): 19.78%
- Test Accuracy(fine-tune): 38.2%

