Eu Wern Teh

What are we covering?

e \Why transfer learning?
e Fine Tuning: how? why? Example

e Practise:
o Ants and Bees dataset
o Caltech 101 dataset

Why Transfer Learning?

e Speedup Training
e Improve generalization (especially: less data)

e Transfer Learning:
o Fine Tuning
o Domain Adaptation
m train a model that does the same thing on different environment
e eQ: object classification on high vs low resolution image
e eQ: customer rating estimation on various domain (travel review vs hotel review)

Domain Adaptation
S Sourcc; |
e

Amazon

Source and Target domain
have the same labels but in a
different domain

Large number of labeled data
source domain, but opposite for
the target domain

Webcam

Domain Adaptation

Product Rating

i)
_ . Source <
Electronics L

Video Games

= B e

-
ll raE

X ‘yllll'iK
‘fieRO
N

Fine Tuning

e Most common form of transfer learning.

e Easy and Effective —
[Model] [YourModel]

E_)(_J ResNet @

Your dataset

Big Dataset

ImageNet
Dataset

Fine Tuning

e In practise, very few people train their model from scratch (with random
weight initialization)

e Fine Tuning is achieved by initializing your model with weights train on
another dataset:

o ImageNet 2012 - 1000 classes and 1 millions images (1000 images per class)
o VGG Faces dataset - 2622 identities and 2.6 millions images (991 images per class)

e Learning rate manipulation during training
o high vs low learning rate will affect the testing performance of your new dataset.
o highly dependent on the size of dataset.

Why fine tuning works?

e Features or Pattern that are working for one dataset may be useful on some

other dataset. ‘ ‘ ‘

Output
(object identity)
A series of stack layers that
— extracts increasingly abstract
(object parts) features from the image.
2nd hidden layer The higher the layers, the
(corners and
- more abstract the features.
Jst hidden layer Lines —» Edges — Shapes —
(cdges) Object Parts — ...

Visible layer
(input pixels)

Deep Network

e ResNet architectures:

layer name | output size 18-layer 34-layer 50-layer 101-layer 152-layer
convl E125¢112 Tx7, 64, stride 2
33 max pool, stride 2
[1x1,64 7 [1x1,64 7 Ix1,64 T
EOIACS. | (R [§§§ 23]xZ [gxg ZZ }x3 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
: e | 1x1,256 | | 1x1,256 | | Ix1,256 |
- . . : [1x1,128 T [1x1,128 [1x1,128 7
conv3x | 28x28 gig 32 X2 ;:g gg x4 | | 3x3,128 | x4 | | 3x3.128 | x4 3x3,128 | x8
L 27 228 S S | 1x1,512 | | sz1, 50 | | 1x1,512 |
- . - . [1x1,256] 1x1,256] 1x1,256]
conv4 _x 14x14 gzg ;gg x2 gzg ;gg X6 3x3,256 | x6 3x3,256 | x23 3x3,256 | x36
L E . L 2 . | 1x1,1024 | 1x1,1024 | 1x1,1024 |
- . - 1 [1x1,512 15%1, 512 1:%1,512
convSx | 7x7 iigig X2 gi;gg x3 || 3x3,512 |x3 3x3,512 | x3 3x3,512 | x3
k. ’ - = ’ = | 1x1,2048 | 1x1, 2048 1x1,2048
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° 3.6x107 3.8x107 7.6x107 11.3x10°

Deep Network

ResNet-18

ZTS ‘AU0D EXE

A

TTS ‘AU EXE

cccccc

TS ‘Au0d EXE

A A

E | z/'z1s ‘Auod gxg

e

95T ‘AU gXg

4

95T ‘AuoD gxg

lllll
-

95T ‘AU0D EXE

A A

. | 2/'95z ‘Muod gxg

llllll

8T ‘AUOD EXE

A

8TT ‘AU0D £XE

el

8TT ‘AUOD £XE

A 4

“ | 7/'sz1'Avorgxe |

-
-
il TN

......

¥9 ‘AUOD EXE

A

9 ‘AU0D EXE

$9 ‘AUOD £XE

. L

4

r ¥9 ‘AUOD EXE

7/ ‘lood

4

| 2/ %9 ‘auod £x;

A

adewn

,

Classifer

Conv3 Conv4 Convbs

Conv2

Convl

Machine Learning Practitioner PYTSRCH

f

Output | TensorFlow

t

Component 2

*

Component 1

*

Data

Manipulate Learning Rate

What features should we keep the most? (little to no change)

what features should we adapt the most? (lots of change — adapt to dataset)
Lines?

o Output A series of stack layers that
Edges” nectideniiv) extracts increasingly abstract
Shapes? features from the image.

. 3rd hidden layer
Object Parts? (objct pars) The higher the layers, the
Classifier? more abstract the features.

2nd hidden layer
(corners and

contours) Lines — Edges — Shapes —
Object Parts — ...

1st hidden layer
(edges)

Visible layer
(input pixels)

Overfitting (Seen Data) x

Generalization

(Unseen Data) -

Manipulate Learning Rate

e |[f we have a small dataset, we would trust the lower level features from our
pretrain model. (It has seen more lines, Edges, Shapes ...)
e Lines?

Output
Edges? {obieck enits e We trust it by not
Shapes? changing the
. 3rd hidden layer features tOO mUCh —
Object Parts? (Rt low learning rate
Classifier?

2nd hidden layer
(corners and

contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Deep Network

ResNet-18

ZTS ‘AU0D EXE

A

TTS ‘AU EXE

cccccc

TS ‘Au0d EXE

A A

E | z/'z1s ‘Auod gxg

e

95T ‘AU gXg

4

95T ‘AuoD gxg

lllll
-

95T ‘AU0D EXE

A A

. | 2/'95z ‘Muod gxg

llllll

8T ‘AUOD EXE

A

8TT ‘AU0D £XE

el

8TT ‘AUOD £XE

A 4

“ | 7/'sz1'Avorgxe |

-
-
il TN

......

¥9 ‘AUOD EXE

A

9 ‘AU0D EXE

$9 ‘AUOD £XE

. L

4

r ¥9 ‘AUOD EXE

7/ ‘lood

4

| 2/ %9 ‘auod £x;

A

adewn

,

Classifer

Conv3 Conv4 Convbs

Conv2

Convl

CIFAR 10 dataset

airplane ﬁ..% V..a;i
automobile E.'Eih‘
ord WS
cat sl bl LB .
«r HWANES YRS
wg [HESEN® BRI R
rog [T A M O O N B8
horse .. m"-m'm
ship =T P
wack oo U e 0 18 5 o L S

Created by: Alex
Krizhevsky, 2009

60,000, 32x32
Color images.

6000 images
per class

50,000 training
10,000 testing

Experiments on Fine Tuning on Cifar 10-4000

All models terminate at 100 epochs.

Models Descriptions Train Acc | Test Acc
Model A (no fine tuning) setall Ir = 1e-1 99.98% 76.34%
Model B setall Ir = 1e-1 99.61% 66.10%
Model A (no fine tuning) setallIr=1e-4 44.97% 41.89%
Model B setalllr=1e-4 92.04% 87.14%
Model C set all features Ir = 1e-4 99.68% 88.72%

setclass Ir = 1e-1

Experiments on Fine Tuning on Cifar 10-4000

All models terminate at 100 epochs.

Models Descriptions

Model C set all features Ir = 1e-4
set class Ir = 1e-1

Model D set conv1, conv2 and conv3 Ir = 1e-4
set conv4 and conv5 Ir = 1e-3
set class Ir = 1e-1

Train Acc

99.68%

99.88%

Test Acc

88.72%

89.65%

How to do it?

opt = optim.SGD([{'params':model.base[0].parameters(), 'lr': args.lr * 1e-3},
{'params':model.base[4].parameters(), 'lr': args.lr * le-3},
{'params':model.base[5].parameters(), 'lr': args.lr * le-3},
{'params':model.base[6].parameters(), 'lr': args.lr * 1le-2},
{'params':model.base[7].parameters(), 'lr': args.lr * 1le-2},

{'params':model.fcl.parameters()}], lr=args.lr, momentum=0.9,
nesterov=False, weight_decay=5e-4)

Freezing Learning Rate

e If you are setting your learning rate to zero on some layers, you should set the
requires_grad attribute to False. (This allows you to save some memory and

compute time).

o for param in model.base.parameters():
param.requires_grad = False

Mean and Standard Deviation adjustment

e Feature Normalization
e you need to normalize your image with the mean and standard deviation of

your pre-trained model
e If you fine-tune your network with ResNet model train on ImageNet in Pytorch

model:

input needs to be scale from 0 to 255 to zero to one
the means of RGB: 0.485, 0.456, 0.406

the std of RGB: 0.229, 0.224, 0.225
https://pytorch.org/docs/stable/torchvision/models.html

e if you fine-tune your network with ResNet model train on ImageNet in Caffe
o you to load your image in BGR and inputs needs to be in 0 to 255

o the means of BGR: 103.939, 116.779, 123.68
o do not need to divide by std.

o O O O

https://pytorch.org/docs/stable/torchvision/models.html

Ants and Bees dataset

https://jupyter.co60.ca

Small quantity of big
resolution images.
398 images, 2
classes, (199 images
per class)

10% training

10% validation

80% testing

Random Chance:
50%

Test Accuracy (base);
60.13%

Test
Accuracy:(fine-tune)
86.71%

Caltech 101 dataset

medium quantity of big
resolution images.
9144 images, 102
classes, (89 images per
class)

1% training

1% validation

98% testing

random chance: ~1%
Test Accuracy(base):
19.78%

Test Accuracy(fine-tune):
38.2%

THANK YOU FOR YOUR ATTENTION

