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What are we covering?
● Why transfer learning?
● Fine Tuning: how? why? Example 
● Practise:

○ Ants and Bees dataset
○ Caltech 101 dataset



Why Transfer Learning?
● Speedup Training
● Improve generalization (especially: less data)
● Transfer Learning:

○ Fine Tuning
○ Domain Adaptation

■ train a model that does the same thing on different environment
● eg: object classification on high vs low resolution image
● eg: customer rating estimation on various domain (travel review vs hotel review)



Domain Adaptation ● Source and Target domain 
have the same labels but in a 
different domain

● Large number of labeled data 
source domain, but opposite for 
the target domain

Amazon
Webcam



Domain Adaptation
Product Rating 

Electronics

Video Games



Fine Tuning 
● Most common form of transfer learning.
● Easy and Effective

ResNet

ImageNet 
Dataset



Fine Tuning 
● In practise, very few people train their model from scratch (with random 

weight initialization)
● Fine Tuning is achieved by initializing your model with weights train on 

another dataset: 
○ ImageNet 2012 - 1000 classes and 1 millions images (1000 images per class)
○ VGG Faces dataset - 2622 identities and 2.6 millions images (991 images per class)

● Learning rate manipulation during training
○ high vs low learning rate will affect the testing performance of your new dataset. 
○ highly dependent on the size of dataset. 



Why fine tuning works?
● Features or Pattern that are working for one dataset may be useful on some 

other dataset.

A series of stack layers that 
extracts increasingly abstract 
features from the image. 

The higher the layers, the 
more abstract the features. 

Lines → Edges → Shapes → 
Object Parts → ...



Deep Network
● ResNet architectures: 



Deep Network
● ResNet-18 



Machine Learning Practitioner 

Component 1

Component 2

Data

Output



Manipulate Learning Rate
● What features should we keep the most? (little to no change)

what features should we adapt the most? (lots of change → adapt to dataset)
● Lines?

Edges?
Shapes?
Object Parts?
Classifier?

A series of stack layers that 
extracts increasingly abstract 
features from the image. 

The higher the layers, the 
more abstract the features. 

Lines → Edges → Shapes → 
Object Parts → ...



Overfitting (Seen Data)
 

Model A

Model B
Generalization 
(Unseen Data)



Manipulate Learning Rate
● If we have a small dataset, we would trust the lower level features from our 

pretrain model. (It has seen more lines, Edges, Shapes ... ) 
● Lines?

Edges?
Shapes?
Object Parts?
Classifier?

● We trust it by not 
changing the 
features too much → 
low learning rate



Deep Network
● ResNet-18 



CIFAR 10 dataset
 

Created by: Alex 
Krizhevsky, 2009

60,000, 32x32 
Color images.

6000 images 
per class

50,000 training
10,000 testing



Experiments on Fine Tuning on Cifar 10-4000
All models terminate at 100 epochs.

Models Descriptions Train Acc Test Acc

Model A (no fine tuning) set all lr = 1e-1 99.98% 76.34%

Model B set all lr = 1e-1 99.61% 66.10%

Model A (no fine tuning) set all lr = 1e-4 44.97% 41.89%

Model B set all lr = 1e-4 92.04% 87.14%

Model C set all features lr = 1e-4
set class lr = 1e-1

99.68% 88.72%



Experiments on Fine Tuning on Cifar 10-4000
All models terminate at 100 epochs.

Models Descriptions Train Acc Test Acc

Model C set all features lr = 1e-4
set class lr = 1e-1

99.68% 88.72%

Model D set conv1, conv2 and conv3 lr = 1e-4
set conv4 and conv5 lr = 1e-3
set class lr = 1e-1

99.88% 89.65%



How to do it?
 

opt = optim.SGD([{'params':model.base[0].parameters(), 'lr': args.lr * 1e-3}, 
                 {'params':model.base[4].parameters(), 'lr': args.lr * 1e-3}, 
                 {'params':model.base[5].parameters(), 'lr': args.lr * 1e-3}, 
                 {'params':model.base[6].parameters(), 'lr': args.lr * 1e-2}, 
                 {'params':model.base[7].parameters(), 'lr': args.lr * 1e-2}, 
                 {'params':model.fc1.parameters()}], lr=args.lr, momentum=0.9,
                    nesterov=False, weight_decay=5e-4)



Freezing Learning Rate
● If you are setting your learning rate to zero on some layers, you should set the 

requires_grad attribute to False. (This allows you to save some memory and 
compute time). 

○ for param in model.base.parameters():
     param.requires_grad = False 



Mean and Standard Deviation adjustment
● Feature Normalization
● you need to normalize your image with the mean and standard deviation of 

your pre-trained model
● If you fine-tune your network with ResNet model train on ImageNet in Pytorch 

model:
○ input needs to be scale from 0 to 255 to zero to one
○ the means of RGB: 0.485, 0.456, 0.406
○ the std of RGB: 0.229, 0.224, 0.225
○ https://pytorch.org/docs/stable/torchvision/models.html

● if you fine-tune your network with ResNet model train on ImageNet in Caffe
○ you to load your image in BGR and inputs needs to be in 0 to 255
○ the means of BGR: 103.939, 116.779, 123.68
○ do not need to divide by std. 

https://pytorch.org/docs/stable/torchvision/models.html


Ants and Bees dataset
● Small quantity of big 

resolution images. 
● 398 images, 2 

classes, (199 images 
per class)

● 10% training
● 10% validation
● 80% testing
● Random Chance: 

50%
● Test Accuracy (base);

60.13%
● Test 

Accuracy:(fine-tune) 
86.71%https://jupyter.co60.ca



Caltech 101 dataset

● medium quantity of big 
resolution images. 

● 9144 images, 102 
classes, (89 images per 
class)

● 1% training
● 1% validation
● 98% testing
● random chance: ~1%
● Test Accuracy(base): 

19.78%
● Test Accuracy(fine-tune): 

38.2%




