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What is Artificial Intelligence?
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What is Artificial Intelligence?

A Scientific Discipline/

An |deal Class of Technology
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MEDIA TRENDS: Al VS BIG DATA

The Battle For Top Al Talent Only
Gets Tougher From Here —_

® Al OR artificial intelligence Ford Goes Big On Al With $1B Investment

Microsoft Bets On General Artificial
Intelligence With Maluuba Acquisition

Samsung To Acquire Artificial Intelligence /
Firm Viv, Created By Siri Makers

Google’s Alphago Al Beats Human In First
Game Of Go Contest \
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== Mentions of ‘Al' vs. 'big data’ in earnings calls
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E® Mentions of different Al terminology in earnings calls
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Relationship to Other Disciplines
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What is Machine Learning?
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+ There are many tasks that computers can do sy
much more efficiently than humans

- e.g. computing Tt to high precision, sorting a huge list
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What is Machine Learning?

+ There are many tasks that computers can do sy
much more efficiently than humans

e.g. computing 1t to high precision, sorting a huge list

. There are tasks which come very naturally to
humans but are very challenging to automate

e.g. recognizing a face or a song, understanding speech
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MLRG Tutorial in Reykjavik* Al 101 / G Taylor




What is Machine Learning?

Machine learning is about enabling

computers to do these tasks, not by

programming them with rules, but
by learning from data.



Basic ML Framework



Basic ML Framework

Input
(Data)

e.g. Image
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Basic ML Framework

(I[r;;)tuat> |%l> ML Pipeline

x X
x *

e.g. Feature Extraction
+ Object Detector

e.g. Image



Basic ML Framework

Input

(Data) ML Pipeline
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e.g.Image e.g. Feature Extraction

+ Object Detector

Output
(Something
useful)
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Detection
(Specified by labeled bounding box)



def square(x):
return x x

X

square(1)
square(2)
square(3)

O A
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https://flipboard.com/topic/keysignature
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Image credit: Bloomberg




Generalization

The central challenge in
machine learning is that the
algorithm must perform on
previously unseen inputs

The ability to perform well on
previously unseen inputs is
called generalization

via Gazette Review



Generalization

The central challenge in
machine learning is that the
algorithm must perform on
previously unseen inputs

The ability to perform well on
previously unseen inputsis ' —
called generalization
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Supervised Learnin
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via thetimes.co.uk



http://thetimes.co.uk

Ground-Truth
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Ground-Truth
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Ground-Truth
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Supervised Learning: Classification

Assignment of inputs to one or more known categories.

Examples:
Object recognition
Scene labeling
Medical diagnosis
Ad click-through prediction
Tagging news articles
Spam filtering

Gesture recognition — T~

12 Jul 2018/ 17 .
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Unsupervised Learning
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http://thetimes.co.uk

Unsupervised Learning:
Clustering

Assignment of inputs to unnamed groups (“clusters”) such
that objects in the same group are similar.

Examples:

- Exploratory data mining

- Plant and animal ecology

- Human genetic clustering

+  Grouping of shopping items
- Market research

- Semi-automated grading

\/'
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Image credit: Huang et al. 2013 “Codewebs: a Pedagogical Search Engine
for Code Submissions to a MOOC”



Unsupervised Learning:
Generative Modelling




einforcement Learning
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Reinforcement Learning: Game

Playing
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Representations in ML

+ The choice of representation has an enormous
effect on the performance of ML algorithms

Cartesian coordinates Polar coordinates

12 Jul 2018/ 23
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via deeplearningbook.org



http://deeplearningbook.org
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Learning a Feature Hierarchy

- It can be very difficult to extract high-level, abstract features from
raw data

- Deep learning solves this challenge by composing representations

- Each layer extracts features from output of previous layer

Simple
classifier

Imag.e/vidﬂ)
pixels

Layer 1 A Layer? A Layer3

Deep learning allows us to build complex concepts
out of simpler concepts
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Relationship to Other Disciplines
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Why So Successful Now?

capacity
As time goes by, we get more data and
more flops/s. The capacity of ML
models should grow accordingly.

data

flop/s
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https://github.com/jcjohnson/neural-style
http://wikidelia.net

— SW DEV PROCESS
Write code, compile, test,
debug, repeat...

Write initial code
Manually improve
s Compiler

via Clement Farabet






Source code » Data

Compiler » Deep Learning

Executable » Predictor

via Clement Farabet



— DL-BASED SW PROCESS

run/debug, mine new data

Collect initial data

-

Automatically refine
data, collect new
data

via Clement Farabet



Mcdium

Andrej Karpatny
Cireclor of Al alTesla. Previously Resesrch Scentisl 2L OpenAl znd PhD studer L al Stanford, | like

to train d2ep neurz nets on large datasets.
Nev 17, 2017 - & min read

Software 2.0

[ sometimes see people refer to neural networks as just “another tool in your
machine learning tolbox". They have some pros and cons, they worlchere or
there, and somelimes you can use them (o win Kaggle competitions.
Unfortunately, this interpretation completely misses the forest for the trees.
Neural networks are not just another classifier, they represent the beginning
of a fundamental shift in how we write software. They are Software 2.0.

‘The “classical stack” of Software 1.0 is what we're all familiar with—it is
wrilten in languages such as Python, C+ + | ete. It consists ol explicit
nstructions o the computer written by a programmer. By writing each line of
code, the programmer is identifying a specific point in program space with

some desirable behavior.

NOVEMEBER 13, 2017
By Pete Warden

in UNCATEGORIZED
22 COMMENTS

Deep Learning is Eating Software
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Thanks to: all of our generous sponsors!
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