Introduction to CNNs and RNNs with PyTorch

Presented by: Adam Balint

Email: balint@uoguelph.ca

Working with more complex data

® Images

e Videos

e Sound

e Time Series
e Text

Task 1:

e Image classification

Image Source (https://www.designboom.com/cars/water-car-python/)

Dataset

e CIFAR10
m 10classes
m 32 x 32 pixel image size
= 60.000 examples
o 50.000 Training
o 10.000 Testing

O - Airplane 1 - Automobile 8 - Ship 9 - Truck

Intro to Convolutional Neural Networks (CNNs)

[[] — BICYCLE

FULLY

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN

SOFTMAX

/ \ CONNECTED
Y Y
HIDDEN LAYERS CLASSIFICATION

Image Source (https://www.mathworks.com/videos/introduction-to-deep-learning-what-
are-convolutional-neural-networks--1489512765771.html

CNN Architecture Component - Convolutional Layer

Image 1 Image 2
Kernel size: 3 Kernel size: 3
Stride size: 1 Stride size: 1
Padding size: 0 Padding size: 1

More visualizations can be seen here (https://github.com/vdumoulin/conv_arithmetic)

In []: nn.Conv2d(cin, cout, kernel size=3, stride=1, padding=0)

nn.Conv2d(cin, cout, kernel size=3, stride=1, padding=1)

CNN Architecture Components - Pooling Layer

Image Source (https://www.guora.com/What-is-max-pooling-in-convolutional-neural-

networks)

In []1: nn.MaxPool2d(kernel size=2, stride=2)

Elephants Chairs

o, R

ASNINNTY ASNINRY ASNINTY
NZRPN = NZR7N = A (A LN
A ANN A 1ANN A 4NN

=S mE =IISmE =1IS\m=

Image Source (https://i.stack.imgur.com/HI2Hé6.pn

Implementing a CNN

In []: def conv block(cin, cout, batch norm=True, activation=nn.ReLU):
if batch norm:
return nn.Sequential(
nn.Conv2d(cin, cout, kernel size=3, stride=1, padding=0),
nn.BatchNorm2d(cout),
activation())
return nn.Sequential (
nn.Conv2d(cin, cout, kernel size=3, stride=1, padding=0),
activation())

In []: class ConvNet(nn.Module):
def init (self, inp size, out_size):
super (ConvNet, self). init ()

self.extractor = nn.Sequential(
conv_block(inp size, 16),
nn.MaxPool2d(kernel size=2, stride=2),
conv_block(1l6, 32),
nn.MaxPool2d(kernel size=2, stride=2),
)

self.classifier = nn.Sequential(
nn.Linear(32*6*6, 100),
nn.RelLU(),
nn.Linear (100, out size),
nn.Sigmoid())

def forward(self, inp):
out = self.extractor(inp)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out

Task 2:

e Sentiment Analysis

| think it's one of the greatest movies which are
ever made, and I've seen many... The book is
better, but it's still a very good movie!

Were | not with friends, and so cheap, | would
have walked out. It failed miserably as satire and
didn't even have the redemption of camp.

Dataset

e IMDB Review
e 50.000 examples
= 25,000 training
m 25.000 Testing
e Labels: Positive (1) and Negative (0)

Intro to Recurrent Neural Networks (RNNs)

<
<
<

_—
=

=

=2

<
—_—

y
O

TWhy Why Why
O

f h h
t-1 t r+1
J ¥ =) —O0—0—0"—
f
Unfold
X x X X

Image Source (https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-

neural-networks/)

RNN Types

one to many many to one many to many many to many
jI T B T R R T N AT
j BN ENEE EERVESTE R

Image Source (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

In

RNN Architecture Components - Memory Units

C »P<— IN

— IN
> —1>0UT >O0UT

(a) Long Short-Term Memory (b) Gated Recurrent Unit
Figure 1: Illustration of (a) LSTM and (b) gated recurrent units. (a) 4, f and o are the input, forget

and output gates, respectively. ¢ and ¢ denote the memory cell and the new memory cell content. (b)
r and z are the reset and update gates, and & and h are the activation and the candidate activation.

Image Source (https://deeplearning4j.org/Istm.html)

nn.LSTMCell(inp dim, hid dim)
nn.LSTM(inp dim, hid dim)

nn.GRUCell (inp dim, hid dim)
nn.GRU(inp _dim, hid_dim)

Implementing a RNN

In []: class LSTM(nn.Module):
def init (self, input size, hidden size, output size):
super (LSTM, self). init ()

self.embedding = nn.Embedding(input size, 500)
self.lstm = nn.LSTM(500, hidden size, num layers=1, bidirectional=True)
self.fc = nn.Linear(hidden size*2, output size)

def forward(self, inp):
embedded = self.embedding(inp)
output, (hidden, cell) = self.lstm(embedded)
hidden = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1)
return self.fc(hidden.squeeze(0))

In []: eclass GRU(nn.Module):
def init (self, inp dim, hid dim, out dim):
super (RNN, self). init ()
self.embedding = nn.Embedding(inp dim, 100)
self.rnn = nn.GRU(100, hid dim, bidirectional=False)
self.fc = nn.Linear(hid dim, out dim)

def forward(self, inp):
embedded = self.embedding(inp)
output, hidden = self.rnn(embedded)
return self.fc(hidden.squeeze(0))

Training the Networks

e Prepare the dataset

e Set up training components
e Create training loop

e Test network

Prepare the Dataset

transform = transforms.ToTensor ()

training data = datasets.CIFAR10(dataset location, download=True, transform=transf
orm)

testing data = datasets.CIFAR10(dataset location, train=False, download=True, tran
sform=transform)

training data, validation data = random split(training data, lengths=[len(training
_data)-1000, 10007])

train loader = Dataloader(training data, shuffle=True, batch size=batch_size)
val loader = Dataloader(validation data, batch size=batch size)
test loader = Dataloader(testing data, batch size=batch size)

train = IMDB(os.environ['HOME'] + "/shared/dataset/train dl.pkl")
val = IMDB(os.environ['HOME'] + "/shared/dataset/val dl.pkl")
test = IMDB(os.environ['HOME'] + "/shared/dataset/test dl.pkl")

train iter, valid iter, test iter = data.BucketIterator.splits((train, val, test),
batch_size=BATCH_SIZE,
sort_key=lambda x: len(x.text),
repeat=False)

In

In

Set up Training Components

model =

optim

ConvNet (3, 4).cuda()
torch.optim.SGD(model.parameters(), 1lr=0.01, momentum=0)

criterion = nn.BCELoss()

model =

optim

RNN (INPUT DIM, HIDDEN DIM, OUTPUT DIM).cuda()
torch.optim.Adam(model.parameters(), 1lr=0.05)

criterion = nn.BCEWithLogitsLoss()

Creating the Training Loop

In []: def train epoch(model, iterator, optimizer, criterion):
epoch _loss = 0
epoch _acc = 0

model.train()
for data in iterator:
optimizer.zero grad()
x = data[0].cuda()
y = torch.zeros(x.size(0), len(class_subset)).float()
y y.scatter (1, data[l].view(x.size(0), 1), 1.0).cuda()
predictions = model (x)

loss = criterion(predictions, y)
acc = calculate_ accuracy(predictions, y)

loss.backward()
optimizer.step()

epoch loss += loss.item()
epoch _acc += acc.item()

return epoch loss / len(iterator), epoch acc / len(iterator)

Creating the Training Loop

In []: def train epoch(model, iterator, optimizer, criterion):
epoch _loss = 0
epoch _acc = 0
model.train()
for batch in iterator:
optimizer.zero grad()
predictions = model (batch.text).squeeze(1l)

y = batch.label

loss = criterion(predictions, y)
acc = calculate_ accuracy(predictions, y)

loss.backward()
optimizer.step()

epoch loss += loss.item()
epoch _acc += acc.item()

return epoch loss / len(iterator), epoch acc / len(iterator)

Training the Network

In []: for epoch in range(num epochs):
train loss, train acc = train epoch(model, train iter, optim, criterion)
valid loss, valid acc evaluate epoch(model, valid iter, optim, criterion)

Testing the Network

In []: test loss, test acc = evaluate epoch(model, test iter, optim, criterion)

Experiment Time and Questions

e Open the Intro to Convolutional Networks or Intro to Recurrent Networks
notebook
m Scroll to the Change Hyperparameters section of the notebook
m Change the hyperparameters to try to improve the test time accuracy of
the network

Scores to Beat

e Convolutional Networks: ~75%
® Recurrent Networks: ~70%

Feel free to ask questions

Further Applications

This pale peach flower has a double row of long thin petals with a large brown center and
coarse loo

The flower is pink with petals that are soft, and separately arranged around the stamens that
* 99.99% Surprised has pi

*We were barely able to catch the breeze at the beach , and it felt as if
someone stepped out of my mind . She was in love with him for the first time in
months , so she had no intention of escaping . The sun had risen from the
ocean , making her feel more alive than normal . She 's beautiful , but the truth
is that | do n't know what to do . The sun was just starting to fade away ,
leaving people scattered around the Atlantic Ocean . | d seen the menin his life
, who guided me at the beach once more *

Samim has made an awesome blog post with lots of results here.

Emotion Detection (https://github.com/co60ca/EmotionNet) Style Transfer

(https://github.com/AdamBalint/Picassos-Iris) Text to Image (https://github.com/aelnoub

/Text-to-lmage-Synthesis) Image to Text (https://github.com/ryankiros/neural-storyteller)

