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| Group activity recognition: what is the overall
situation?

5




\‘-‘4 ———

Iong::terlr_n care “ i hélp the Walker
aclliity fallen person ‘
These are inter-related problems:
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Desiderata for Activity Recognition Models

Label structure Group structure

help the fallen
person
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Task: action detection
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Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Dominant paradigm: Dense processing
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Efficiently detecting actions

Baseball Swing

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Our model for efficient action detection

Detected
actions
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Our model for efficient action detection

Detected
actions

Convolutional neural network
(frame information)
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Our model for efficient action detection

Detected
actions

Recurrent neural network
(time information)

Convolutional neural network
(frame information)
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Our model for efficient action detection

Detected
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Cr 11
Outputs:
Output Detection instance hypothesis [start, end]
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Our model for efficient action detection

Detected
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Our model for efficient action detection

Detected
actions

Outputs:

Detection instance hypothesis [start, end]
indicator

Next frame to glimpse
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(frame information)
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Our model for efficient action detection
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Our model for efficient action detection

Detected
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Our model for efficient action detection
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Our model for efficient action detection
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Our model for efficient action detection
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Our model for efficient action detection
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Our model for efficient action detection
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Our model for efficient action detection
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Training the detection instance output
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Training the non-differentiable outputs
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Training the non-differentiable outputs
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Training the non-differentiable outputs
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Training the non-differentiable outputs
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Training the non-differentiable outputs

Training data =ol P T T LHL LR =
good bad bad
Detections o L T T | [T J T T T[]
di a ds . .
/ / \ (1) whether to predict a detection
Model’s action I ——— =g - t 5 ns T |
sequence a rame rame rame rame
\_ N U (2) where to look next
go to frame 8 goto frame 6 go to frame 15

Train an policy 7T for actions (1) and (2) using REINFORCE wiliams 1992]
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Action detection results

Detection AP at IOU 0.5

Dataset
State-of-the-art Our result

THUMOS 2014 : 17.1

ActivityNet sports : 36.7

ActivityNet work : 39.9

While glimpsing only 2% of frames

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Learned policies

Ground Truth

Predictions

Observation
Sequence

Frame

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Learned policies

Detections

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Importance of prediction indicator output

mAP (IOU = 0.5)

Ours
(full model)

Ours w/o prediction indicator output
(always predict)

Deciding when to output a prediction (learning to do non-
maximum suppression) matters.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Importance of location output

mAP (IOU = 0.5)

Ours
(full model)

Ours w/o prediction indicator output
(always predict)

Ours w/o location output
(uniform sampling)

Deciding where to look next (location output) has even greater
effect.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Importance of location output

Ground Truth I

Predictions —
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Frames

: Predictions I
Ours w/o location output
Observed
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t

Uniform sampling does not always have sufficient temporal
resolution where it's needed.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Removing both prediction indicator
and location outputs

mAP (IOU = 0.5)

Ours
(full model)

Ours w/o prediction indicator output

(always predict)
Ours w/o location output
(uniform sampling)

Ours w/o prediction indicator w/o location output
(always predict, with uniform sampling)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Importance of location regression

mAP (IOU =0.5)
Ours

(full model)

Ours w/o prediction indicator output
(always predict)

Ours w/o location output
(uniform sampling)

Ours w/o prediction indicator w/o location output
(always predict, with uniform sampling)

Ours w/o location regression
(always output mean action duration)

Simply outputting mean action duration gives significantly worse
performance.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.
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Role of Context in Actions

1994 - Pavel Bure Goal In Double Overtime. Game 7 - Vancouver Vs Calgary
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Analyzing Human Trajectories to Recognize Actions

70
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Which team is it?
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Will the shot be
successful?
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Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Motivation

of players on the

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Motivation
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Key Player Definition
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Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018




Shared-Compare Trajectory Network
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Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Shared-Compare Trajectory Network
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Shared Trajectory Network

e Consists of 1D convolution and max-pooling |:
e L earning generic representation for each ind | |\

Mehrasa, Z

1D max-pooling layer
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Shared-Compare Trajectory Network
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Shared Compare Network
Input:

e Pairs of individual trajectory features provided

j/ Shared Comparison

H ea 1 e }—’I %
by Shared Trajectory Network Ceat. ) o Net I
G e 125 | 28 2l 23| e S
_ _ ) ) Gt 82|l S&|[S&||8& _,IS
e Pairs are formed relative to a “key player
Learning: l
Enforce an ordering
e The relative motion patterns of pairs

among the players
e |nteraction cues of players

Output: relative motion pattern representation of each pair

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Experiments
e Event Recognition on the Sportlogiq Dataset

e Team ldentification on the NBA Dataset

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Event recognition using Sportloglq dataset

Task Definition

e Event classification
e 6 event classes

o pass, dump in, dump out, shot, carry, puck protectiof
e Dataset: Sportlogiq hockey dataset

—

Shared-Compare
Trajectory Network

v

Predict event label

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018 62



Event recognition using
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Sportlogig dataset

How the Sportlogiq
dataset looks
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Event recognition using Sportlogiq dataset

e Sportlogig Dataset Information

o State of the art algorithms are used to automatically
detect and track players in raw broadcast video

. . . C

oTrajectory data are estimated using homography & \
Cb{é
. X
o Trajectory length: 16 frames 5
s
o # players used is fixed: 5 RS
Q“&

o # of samples of each event 0 500 1000 1500 2000 2500 3000

Number of samples

o 4 games for training, 2 games for validation, and 2 games for testing

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018 64
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Event recognition using Sportlogiq dataset

e [raining phase:

o Key player is provided
o Remaining players are ranked by proximity to the key player

e [est phase:

o Both cases of known and unknown key player

o Average pooling strategy for the case of unknown key player

Key Player

67



Event recognition on Sportlogiq dataset

(Unknown Key Player |

IDT| C3D|Fine-tuned C3D|Shared-Cmp
pass 72.86%|71.10% 77.45% 78.13% e In comparison to IDT
dump out 13.75('7(:. 11.66% 18.15% 22.14% 13.2 higher mAP
dump in 35%| 7.58% 19.04% 26.63%
shot 1’% 0 %23.37% 38.96% 40.52% .
e In comparison to C3D

carry  |45.66%|64.75% 65.65%|  61.10% .
8.72% trained from scratch

puck protection| 6.28%| 6.50% 7.98% .
mAP 26.32%30.83% 37.87% 39.54% 8.7 higher mAP
[ Known Key Player ] e In comparison to fine-
IDT| C3D|Fine-tuned C3D|Shared-Cmp tuned C3D 1.7 higher
pass 73.35%|77.30% 84.34% 81.33% mAP
dump out  [14.34%|10.17% 17.10% 23.11%
dump in 5.77%|10.25% 24.83% 50.04%
ShOt 13.070/0 34 17%] 58.88(% 48.51(%3
carry 47.38%(86.37% 90.10% 85.96%
puck protection| 7.28%|11.83% 13.99% 11.54%
mAP 26.86%(38.35% 48.21% 50.08%




Event recognition on Sportlogiq dataset

Precision-recall curve

1.0

puck protection

- Known key
 player

coooooooor

'.002 0406 081

002 04 06 08

60 02 0.4 0.6 0.8 I

- Unknown key

 player

0.8
0.6
0.4
0.2

(o] OO—'NUJ-&-U‘IO’)\ICO@O

o =

e —

o o o o
N B O

|| — Fine-tuned C3D
|| — IDT
— Shared-Cmp.

0 02 0.4 06 08 10

%O 0.2 0.4 0.6 0.8 10%

0 02 04 06 08 10°0.0 02 04 06 08 L0°2.0 02 0.4 06 08 L.00.0 02 0.4 0.6 08 L0

69




Experiments

e Event Recognition on the Sportlogig Dataset

e Team ldentification on the NBA Dataset

70



Team ldentification on the NBA Dataset

Task Definition | |
Team Identification i 2 ‘9/- @
//\ | |\—

([
e Stacked Trajectory Network -
([
([

30 NBA teams o
Dataset: NBA basketball dataset

Network

v

Team
Identification

[ Stacked Trajectory }

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018 A



Team ldentification on the NBA Dataset

How the NBA )
dataset looks like

50

40|

10+

-10

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018 72



Team Identification using NBA dataset

e Dataset Information

o Trajectory data are acquired by a multi-camera system

6000

o Sampling rate: 25Hz 5000

4000

of samples

3000

o Extract 137176 possessions from 1076 games .

2000

[}
o
£
=
=

1000

o 200 frames per possession

(,\y\‘\\v M S o E v

N NNETSR

o 82375 poss. for training, 27437 poss. for testing, and 27437 poss. for validation

o Number of poss. per team

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018 73



Team ldentification on the NBA Dataset

Results

layers acc hit@2 | hit@3 | game acc
2conv 10.68% | 18.09% | 24.31% | 50.00%
3conv 18.86% | 28.89% | 36.47% | 87.05%
4conv 22.34% | 33.03% | 40.47% | 93.41%
Sconv 24.78% | 35.61% | 42.95% | | 95.91%
Sconv+2fc | 25.08% | 35.83% | 42.85% | 94.32%

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018 74



Shot location Prediction

o Task: Predict where the next shot will take
place

* Input: A sequence of 2D positions of 10 4
players and the ball in the court
coordinates. 41

» Qutput: A distribution over s_hootim}g ZONes;
A cell where the next shot will most likely

take place 1 O

* This discretization is commonly used for
analyzing hot shooting zones |

NBA.com/Stats

Reference: http://www.nba.com/bucks/features/boeder-130923



Result

Accuracy

? — LSTM, full seq.
baseline 1 .
N * Baseline 1: Use the most frequent
' cell as output
+ Baseline 2: Use the ball position as
output

Distance from current frame to the last frame




Show video



* Predict next
activity
* When
* Where
* What
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Conclusion

Methods for handling structures in deep networks

Label structure: message passing algorithms for multi-level image/video labeling;
purely from image data or with partial labels

Temporal structure: action detection in time; efficient glimpsing of video frames

Group structure: network structures to connect related people, gating functions or
modules for reasoning about relations
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