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What does activity recognition involve?



Detection: are there people?



Objects and scenes: where are they?
chair

walker

floor

indoor scene

long term care 
facility



Action recognition: what are they doing?
squatfall

stand
run



Intention/social role: why are they doing this?
comfort

watch
get help



Group activity recognition: what is the overall 
situation?

help the 
fallen person



help the 
fallen person

chair

walker

floor

indoor scene

long term care 
facility

comfort

watch

get help

squatfall

stand

run

These are inter-related problems:
model structures



Desiderata for Activity Recognition Models
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Label structure Temporal structure Group structure

chair

walker

floor

indoor scene

long term care facility

time

help the fallen 
person
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Task: action detection

Input Output

t = 0 t = T
Running

Talking

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Dominant paradigm: Dense processing

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

t = 0 t = T

…

…

Standard in THUMOS challenge 
action detection entries
Oneata et al. 2014
Wang et al. 2014
Oneata et al. 2014
Yuan et al. 2015

Sliding windows Action proposals

Gkioxari and Malik 2015
Yu et al. 2015
Escorcia et al. 2016
Peng and Schmid 2016
He et al. 2018



Efficiently detecting actions

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



t = 0 t = T

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video



t = 0 t = T

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video



t = 0 t = T

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video



t = 0 t = T

Recurrent neural network
(time information)

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video



t = 0 t = T

Recurrent neural network
(time information)

[ ]

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video

Outputs:
Detection instance hypothesis [start, end]



t = 0 t = T

Recurrent neural network
(time information)

[ ]

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

x

Video

Outputs:
Detection instance hypothesis [start, end]
Emission indicator



t = 0 t = T

Recurrent neural network
(time information)

[ ]

Outputs:
Detection instance hypothesis [start, end]
Emission indicator
Next frame to glimpse   

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

x

Video



x

t = 0 t = T

Recurrent neural network
(time information)

[ ]

Outputs:
Detection instance hypothesis [start, end]
Emission indicator
Next frame to glimpse   

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video



x

t = 0 t = T

Recurrent neural network
(time information)

[ ]

Outputs:
Detection instance hypothesis [start, end]
Emission indicator
Next frame to glimpse   

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video



x

t = 0 t = T

Recurrent neural network
(time information)

[ ]

Outputs:
Detection instance hypothesis [start, end]
Emission indicator
Next frame to glimpse   

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video

Output

[ ]



x

t = 0 t = T

Recurrent neural network
(time information)

[ ]

Outputs:
Detection instance hypothesis [start, end]
Emission indicator
Next frame to glimpse   

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video

Output

[ ]

x



x

t = 0 t = T

Recurrent neural network
(time information)

[ ]

Outputs:
Detection instance hypothesis [start, end]
Emission indicator
Next frame to glimpse   

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video

Output

[ ]

x



x

t = 0 t = T

Recurrent neural network
(time information)

[ ]

Outputs:
Detection instance hypothesis [start, end]
Emission indicator
Next frame to glimpse   

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video

Output

[ ]

x



x

t = 0 t = T

Recurrent neural network
(time information)

[ ]

Outputs:
Detection instance hypothesis [start, end]
Emission indicator
Next frame to glimpse   

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video

Output

[ ]

x
Output

[ ]



x

t = 0 t = T

Recurrent neural network
(time information)

[ ]

Outputs:
Detection instance hypothesis [start, end]
Emission indicator
Next frame to glimpse   

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video

Output

[ ]

x
Output

[ ]

[ ]



x

t = 0 t = T

Recurrent neural network
(time information)

[ ]

Outputs:
Detection instance hypothesis [start, end]
Emission indicator
Next frame to glimpse   

Output

Convolutional neural network 
(frame information)

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Our model for efficient action detection
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Detected 
actions

Video

Output

[ ]

x
Output

[ ]

[ ]

…



Training the detection instance output
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Training data

Positive video Negative video

t = 0 t = T[ ] [ ] t = 0 t = T

d1 d2
Detections

t = 0 t = T[ ] [ ] t = 0 t = T

g1

[ ]
d3

[ ]
d4

g2

Reward for detection

L2 distance
localization loss

y3 = 2y2 = 1y1 = 1 y4 = 0

cross-entropy
classification loss

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.
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Training data

t = 0 t = T[ ] [ ]Detections

t = 0 t = T[ ] [ ]
[ ]

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Training the non-differentiable outputs



Training the non-differentiable outputs
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Training data

t = 0 t = T[ ] [ ]
d1 d2

Detections

t = 0 t = T[ ] [ ]

Model’s action

sequence a Frame 1 Frame 8 Frame 6

⍉

go to frame 8 go to frame 6

(1) whether to predict a detection

(2) where to look next

[ ]

Frame 15

d3

go to frame 15

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Train an policy        for actions (1) and (2) using REINFORCE [Williams 1992]

32

Training data

t = 0 t = T[ ] [ ]Detections

t = 0 t = T[ ] [ ]

Frame 1 Frame 8 Frame 6

[ ]

Frame 15
Model’s action
sequence a

go to frame 8 go to frame 6
(2) where to look next

go to frame 15

d1 d2
⍉ (1) whether to predict a detection

d3

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Training the non-differentiable outputs



Train an policy        for actions (1) and (2) using REINFORCE [Williams 1992]
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Training data

t = 0 t = TDetections

t = 0 t = T[ ] [ ]

Frame 1 Frame 8 Frame 6

Reward for an action sequence    :

Frame 15
Model’s action
sequence a

[ ] [ ]bad bad

go to frame 8 go to frame 6
(2) where to look next

go to frame 15

[ ]good

d1 d2
⍉ (1) whether to predict a detection

d3

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Training the non-differentiable outputs



Train an policy        for actions (1) and (2) using REINFORCE [Williams 1992]

Training the non-differentiable outputs

34

Training data

t = 0 t = TDetections

t = 0 t = T[ ] [ ]

Frame 1 Frame 8 Frame 6 Frame 15

Objective:

Gradient:

Monte-Carlo approximation:

Model’s action
sequence a

[ ] [ ]bad bad

go to frame 8 go to frame 6
(2) where to look next

go to frame 15

[ ]good

d1 d2
⍉ (1) whether to predict a detection

d3

Reward for an action sequence    :

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Action detection results

Dataset
Detection AP at IOU 0.5

State-of-the-art Our result

THUMOS 2014 14.4 17.1

ActivityNet sports 33.2 36.7

ActivityNet work 31.1 39.9

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

While glimpsing only 2% of frames



Learned policies

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Learned policies



Importance of prediction indicator output

Deciding when to output a prediction (learning to do non-
maximum suppression) matters.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

mAP (IOU = 0.5)

Ours
(full model) 17.1
Ours w/o prediction indicator output
(always predict) 12.4



Importance of location output

Deciding where to look next (location output) has even greater 
effect.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

mAP (IOU = 0.5)

Ours
(full model) 17.1
Ours w/o prediction indicator output
(always predict) 12.4

Ours w/o location output 
(uniform sampling) 9.3



Importance of location output

Uniform sampling does not always have sufficient temporal 
resolution where it’s needed.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

Ours

Ours w/o location output
(uniform sampling)



Removing both prediction indicator 
and location outputs

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.

mAP (IOU = 0.5)

Ours
(full model) 17.1
Ours w/o prediction indicator output
(always predict) 12.4

Ours w/o location output 
(uniform sampling) 9.3

Ours w/o prediction indicator w/o location output
(always predict, with uniform sampling) 8.6



Importance of location regression
mAP (IOU = 0.5)

Ours
(full model) 17.1
Ours w/o prediction indicator output
(always predict) 12.4

Ours w/o location output 
(uniform sampling) 9.3

Ours w/o prediction indicator w/o location output
(always predict, with uniform sampling) 8.6

Ours w/o location regression
(always output mean action duration) 5.5

Simply outputting mean action duration gives significantly worse 
performance.

Yeung, Russakovsky, Mori, Fei-Fei. End-to-end Learning of Action Detection from Frame Glimpses in Videos. CVPR 2016.



Desiderata for Activity Recognition Models
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Label structure Temporal structure Group structure

chair

walker

floor

indoor scene

long term care facility

time

help the fallen 
person

Hu et al., CVPR 16
Deng et al., CVPR 16
Nauata et al., CVPRW 17
Deng et al., CVPR 17

Yeung et al., CVPR 16
Yeung et al., IJCV 17
He et al., WACV 18
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Mehrasa et al., SLOAN 18
Khodabandeh et al., arXiv 17
Lan et al. CVPR 12
Zhong et al., 2018



Role of Context in Actions

Who has the puck?



45



Analyzing Human Trajectories to Recognize Actions

Which team is it?

Who was player X?

Will the shot be 
successful?

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Motivation

Using trajectories of players on the 
rink:

● Player 1 is passing the puck to 
player 5

● Player 2 is trying to block 
player 1

3

2 4

5

1

Trajectory definition: sequence of player movements across space over 
time

3

2
4

5

1

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Motivation

locations matter!

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Key Player Definition

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Shared-Compare Trajectory Network

Shared-Compare 
Trajectory 
Network

Pass

Dump out

Dump in

Puck 
Protection

carry

shot

Classify

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Shared-Compare Trajectory Network

Pass

Dump out

Dump in
Puck 

Protection
carry

shot

Shared-Compare Trajectory Network



● Consists of 1D convolution and max-pooling layers
● Learning generic representation for each individual

Shared Trajectory Network

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

Pooling stride =2

Kernel Size =C * K * M

1D convolution layer1D max-pooling layer

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Shared-Compare Trajectory Network

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Shared Compare Network
Input: 

● Pairs of individual trajectory features provided
by Shared Trajectory Network

● Pairs are formed relative to a “key player”

Learning:
● The relative motion patterns of pairs

● Interaction cues of players

Output: relative motion pattern representation of each pair

Enforce an ordering 
among the players

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



● Event Recognition on the Sportlogiq Dataset

● Team Identification on the NBA Dataset

Experiments
● Event Recognition on the Sportlogiq Dataset

● Team Identification on the NBA Dataset

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Event recognition using Sportlogiq dataset
Task Definition

● Event classification 
● 6 event classes

○ pass, dump in, dump out, shot, carry, puck protection
● Dataset: Sportlogiq hockey dataset

62

Shared-Compare 
Trajectory Network

Predict event label

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Event recognition using Sportlogiq dataset
How the Sportlogiq
dataset looks

63Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Event recognition using Sportlogiq dataset
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● Sportlogiq Dataset Information

○ State of the art algorithms are used to automatically 
detect and track players in raw broadcast video

○Trajectory data are estimated using homography

○ Trajectory length: 16 frames

○ # players used is fixed: 5

○ # of samples of each event

○ 4 games for training, 2 games for validation, and 2 games for testing

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Event recognition using Sportlogiq dataset

67

● Training phase:
○ Key player is provided
○ Remaining players are ranked by proximity to the key player

● Test phase:

○ Both cases of known and unknown key player

○ Average pooling strategy for the case of unknown key player

Key Player



Event recognition on Sportlogiq dataset
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Unknown Key Player

Known Key Player

● In comparison to IDT 
13.2 higher mAP

● In comparison to C3D 
trained from scratch 
8.7 higher mAP

● In comparison to fine-
tuned C3D 1.7 higher 
mAP



Event recognition on Sportlogiq dataset
Precision-recall curve

69

Unknown key 
player

Known key 
player



● Event Recognition on the Sportlogiq Dataset

● Team Identification on the NBA Dataset

Experiments
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● Event Recognition on the Sportlogiq Dataset

● Team Identification on the NBA Dataset



Team Identification on the NBA Dataset
Task Definition

● Team Identification
● Stacked Trajectory Network 
● 30 NBA teams
● Dataset: NBA basketball dataset

71

Stacked Trajectory 
Network

Team 
Identification

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Team Identification on the NBA Dataset
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How the NBA
dataset looks like

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Team Identification using NBA dataset
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● Dataset Information

○ Trajectory data are acquired by a multi-camera system

○ Sampling rate: 25Hz

○ Extract 137176 possessions from 1076 games

○ 200 frames per possession

○ 82375 poss. for training, 27437 poss. for testing, and 27437 poss. for validation

○ Number of poss. per team

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Team Identification on the NBA Dataset
Results

74Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018



Shot location Prediction
• Task: Predict where the next shot will take 

place

• Input: A sequence of 2D positions of 10 
players and the ball in the court 
coordinates.

• Output: A distribution over shooting zones; 
A cell where the next shot will most likely 
take place

• This discretization is commonly used for 
analyzing hot shooting zones

Reference: http://www.nba.com/bucks/features/boeder-130923

01

2

3
4

5 6 7
89

10 11 12

13



Result

• Baseline 1: Use the most frequent 
cell as output

• Baseline 2: Use the ball position as 
output

Distance from current frame to the last frame

Ac
cu

ra
cy



Show video
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Fig. 4: Visualization of sample arrival patterns and predicted time distributions on the
NBA dataset (TPMB). The horizontal axis is the time line for a sequence of activ-
ity events within a basketball possession. The upper part of each subfigure plots the
predicted and ground-truth time intervals between the current activity and the next
activity. The lower part of each subfigure shows the predicted time distribution at
each activity event (red or blue areas). There is also a gray bar indicating the error
between the predicted time and the ground-truth time on the next activity. The wider
the gray bar, the more error and blueish the corresponding distribution; the thinner the
gray bar, the less error and reddish the corresponding distribution. The near-vertical
spiky distribution at the end of each subfigure shows how well TPM is predicting the
sequence end.

Fig. 5: Qualitative results of space prediction on the NBA dataset. Multiple example
possessions are shown, each in a di↵erent color. Ground-truth locations of the activity
sequences are connected with dashed lines. Each arrow points from the ground-truth
location of an activity to its location predicted by our model.

78

• Predict next 
activity 
• When
• Where
• What
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Fig. 4: Visualization of sample arrival patterns and predicted time distributions on the
NBA dataset (TPMB). The horizontal axis is the time line for a sequence of activ-
ity events within a basketball possession. The upper part of each subfigure plots the
predicted and ground-truth time intervals between the current activity and the next
activity. The lower part of each subfigure shows the predicted time distribution at
each activity event (red or blue areas). There is also a gray bar indicating the error
between the predicted time and the ground-truth time on the next activity. The wider
the gray bar, the more error and blueish the corresponding distribution; the thinner the
gray bar, the less error and reddish the corresponding distribution. The near-vertical
spiky distribution at the end of each subfigure shows how well TPM is predicting the
sequence end.

Fig. 5: Qualitative results of space prediction on the NBA dataset. Multiple example
possessions are shown, each in a di↵erent color. Ground-truth locations of the activity
sequences are connected with dashed lines. Each arrow points from the ground-truth
location of an activity to its location predicted by our model.



Methods for handling structures in deep networks

Label structure: message passing algorithms for multi-level image/video labeling; 
purely from image data or with partial labels

Temporal structure: action detection in time; efficient glimpsing of video frames 

Group structure: network structures to connect related people, gating functions or 
modules for reasoning about relations

81

Conclusion
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