

# Analyzing and Predicting Human Activities in Video

#### Greg Mori

Professor School of Computing Science Simon Fraser University

Research Director Borealis AI Vancouver

#### What does activity recognition involve?



#### Detection: are there people?







#### Objects and scenes: where are they?



chair

#### Action recognition: what are they doing?



run

stand

squat

#### Intention/social role: why are they doing this?



comfort

get help

watch

help the fallen person

# Group activity recognition: what is the overall situation?



# **Desiderata for Activity Recognition Models**

#### Label structure



Hu et al., CVPR 16 Deng et al., CVPR 16 Nauata et al., CVPRW 17 Deng et al., CVPR 17

#### Temporal structure



Yeung et al., CVPR 16 Yeung et al., IJCV 17 He et al., WACV 18 Chen et al., ICCVW 17

#### Group structure



Ibrahim et al., CVPR 16 Mehrasa et al., SLOAN 18 Khodabandeh et al., arXiv 17 Lan et al. CVPR 12 Zhong et al., 2018

### Task: action detection



# Dominant paradigm: Dense processing



action detection entries Oneata et al. 2014 Wang et al. 2014 Oneata et al. 2014 Yuan et al. 2015

#### **Sliding windows**



Gkioxari and Malik 2015 Yu et al. 2015 Escorcia et al. 2016 Peng and Schmid 2016 He et al. 2018

#### **Action proposals**

# Efficiently detecting actions



| Detected |
|----------|
| actions  |



| Detected |
|----------|
| actions  |



#### Training the detection instance output









Train an policy  $\pi_{\theta}$  for actions (1) and (2) using REINFORCE [Williams 1992]



Train an policy  $\pi_{\theta}$  for actions (1) and (2) using REINFORCE [Williams 1992]

Reward for an action sequence a:  $r(a) = \mathbf{N}^+ - \alpha \mathbf{N}^-$ 



Train an policy  $\pi_{ heta}$  for actions (1) and (2) using REINFORCE [Williams 1992]

Reward for an action sequence a:  $r(a) = \mathbf{N}^+ - \alpha \mathbf{N}^-$ 

$$\begin{array}{lll} \text{Objective:} & J(\theta) = \sum_{a} p_{\theta}(a) r(a) \\ \text{Gradient:} & \nabla J(\theta) = \sum_{a} p_{\theta}(a) r(a) \nabla \log p_{\theta}(a) \end{array}$$

$$\begin{array}{lll} \text{Monte-Carlo approximation:} & \nabla J(\theta) \approx \frac{1}{K} \sum_{k=1}^{K} r(a^{k}) \sum_{t=1}^{T} \nabla \log \pi_{\theta}(a^{k}_{t} | M^{k}_{t}) \end{array}$$

### Action detection results

| Dataset            | Detection AP at IOU 0.5 |            |
|--------------------|-------------------------|------------|
|                    | State-of-the-art        | Our result |
| THUMOS 2014        | 14.4                    | 17.1       |
| ActivityNet sports | 33.2                    | 36.7       |
| ActivityNet work   | 31.1                    | 39.9       |

#### While glimpsing only 2% of frames

#### Learned policies


### Learned policies



### Importance of prediction indicator output

|                                                          | <b>mAP</b> (IOU = 0.5) |
|----------------------------------------------------------|------------------------|
| <b>Ours</b><br>(full model)                              | 17.1                   |
| Ours w/o prediction indicator output<br>(always predict) | 12.4                   |

Deciding when to output a prediction (learning to do nonmaximum suppression) matters.

### Importance of location output

|                                                          | <b>mAP</b> (IOU = 0.5) |
|----------------------------------------------------------|------------------------|
| <b>Ours</b><br>(full model)                              | 17.1                   |
| Ours w/o prediction indicator output<br>(always predict) | 12.4                   |
| Ours w/o location output<br>(uniform sampling)           | 9.3                    |

Deciding where to look next (location output) has even greater effect.

### Importance of location output



Uniform sampling does not always have sufficient temporal resolution where it's needed.

# Removing both prediction indicator and location outputs

|                                                                                              | <b>mAP</b> (IOU = 0.5) |
|----------------------------------------------------------------------------------------------|------------------------|
| <b>Ours</b><br>(full model)                                                                  | 17.1                   |
| Ours w/o prediction indicator output<br>(always predict)                                     | 12.4                   |
| Ours w/o location output<br>(uniform sampling)                                               | 9.3                    |
| Ours w/o prediction indicator w/o location output<br>(always predict, with uniform sampling) | 8.6                    |

### Importance of location regression

|                                                                                           | <b>mAP</b> (IOU = 0.5) |
|-------------------------------------------------------------------------------------------|------------------------|
| <b>Ours</b><br>(full model)                                                               | 17.1                   |
| Ours w/o prediction indicator output<br>(always predict)                                  | 12.4                   |
| Ours w/o location output<br>(uniform sampling)                                            | 9.3                    |
| Ours w/o prediction indicator w/o location output (always predict, with uniform sampling) | 8.6                    |
| Ours w/o location regression<br>(always output mean action duration)                      | 5.5                    |

# Simply outputting mean action duration gives significantly worse performance.

### **Desiderata for Activity Recognition Models**

#### Label structure



Hu et al., CVPR 16 Deng et al., CVPR 16 Nauata et al., CVPRW 17 Deng et al., CVPR 17

#### Temporal structure



Yeung et al., CVPR 16 Yeung et al., IJCV 17 He et al., WACV 18 Chen et al., ICCVW 17

#### Group structure



Ibrahim et al., CVPR 16 Mehrasa et al., SLOAN 18 Khodabandeh et al., arXiv 17 Lan et al. CVPR 12 Zhong et al., 2018

### Role of Context in Actions

1994 - Pavel Bure Goal In Double Overtime. Game 7 - Vancouver Vs Calgary

Image: Image:



### Who has the puck?



### Analyzing Human Trajectories to Recognize Actions



Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018

### **Motivation**



Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018

### **Motivation**



locations matter!

# **Key Player Definition**





### Shared-Compare Trajectory Network



### Shared-Compare Trajectory Network



Shared-Compare Trajectory Network

# Shared Trajectory Network

- Consists of 1D convolution and max-pooling
- Learning generic representation for each ind



**⊣**•⊢

╡•╞

### **Shared-Compare Trajectory Network**



# Shared Compare Network

#### Input:

- Pairs of individual trajectory features provided feat.1
  by Shared Trajectory Network
- Pairs are formed relative to a "key player"

#### Learning:

- The relative motion patterns of pairs
- Interaction cues of players

Output: relative motion pattern representation of each pair

Mehrasa, Zhong, Tung, Bornn, Mori, Learning Person Trajectory Representations for Team Activity Analysis, SLOAN 2018

Enforce an ordering among the players



### Experiments

- Event Recognition on the Sportlogiq Dataset
- Team Identification on the NBA Dataset

#### Task Definition

- Event classification
- 6 event classes
  - o pass, dump in, dump out, shot, carry, puck protection
- Dataset: Sportlogiq hockey dataset



How the Sportlogiq dataset looks



#### Sportlogiq Dataset Information

 $\circ$  State of the art algorithms are used to automatically detect and track players in raw broadcast video

o Trajectory data are estimated using homography

○ Trajectory length: 16 frames

- $\circ$  # players used is fixed: 5
- $\circ$  # of samples of each event



• 4 games for training, 2 games for validation, and 2 games for testing

#### • Training phase:

 $\circ$  Key player is provided

 $\circ$  Remaining players are ranked by proximity to the key player

• Test phase:

- $\circ~$  Both cases of known and unknown key player
- $\circ\;$  Average pooling strategy for the case of unknown key player



#### Unknown Key Player

|                       | IDT    | C3D    | Fine-tuned C3D | Shared-Cmp |  |  |
|-----------------------|--------|--------|----------------|------------|--|--|
| pass                  | 72.86% | 71.10% | 77.45%         | 78.13%     |  |  |
| dump out              | 13.75% | 11.66% | 18.15%         | 22.14%     |  |  |
| dump in               | 6.35%  | 7.58%  | 19.04%         | 26.63%     |  |  |
| $\operatorname{shot}$ | 13.05% | 23.37% | 38.96%         | 40.52%     |  |  |
| carry                 | 45.66% | 64.75% | 65.65%         | 61.10%     |  |  |
| puck protection       | 6.28%  | 6.50%  | 7.98%          | 8.72%      |  |  |
| mAP                   | 26.32% | 30.83% | 37.87%         | 39.54%     |  |  |

#### Known Key Player

|                 | IDT    | C3D    | Fine-tuned C3D | Shared-Cmp |
|-----------------|--------|--------|----------------|------------|
| pass            | 73.35% | 77.30% | 84.34%         | 81.33%     |
| dump out        | 14.34% | 10.17% | 17.10%         | 23.11%     |
| dump in         | 5.77%  | 10.25% | 24.83%         | 50.04%     |
| shot            | 13.07% | 34.17% | 58.88%         | 48.51%     |
| carry           | 47.38% | 86.37% | 90.10%         | 85.96%     |
| puck protection | 7.28%  | 11.83% | 13.99%         | 11.54%     |
| mAP             | 26.86% | 38.35% | 48.21%         | 50.08%     |

- In comparison to IDT 13.2 higher mAP
- In comparison to C3D trained from scratch
   8.7 higher mAP
- In comparison to finetuned C3D 1.7 higher mAP

#### Precision-recall curve



### Experiments

- Event Recognition on the Sportlogiq Dataset
- Team Identification on the NBA Dataset

# Team Identification on the NBA Dataset

#### Task Definition

- Team Identification
- Stacked Trajectory Network
- 30 NBA teams
- Dataset: NBA basketball dataset



### Team Identification on the NBA Dataset

How the NBA dataset looks like



# Team Identification using NBA dataset

#### Dataset Information

- $\circ$  Trajectory data are acquired by a multi-camera system
- Sampling rate: 25Hz
- $\circ$  Extract 137176 possessions from 1076 games
- $\circ$  200 frames per possession



- $\circ$  82375 poss. for training, 27437 poss. for testing, and 27437 poss. for validation
- $\circ$  Number of poss. per team

# Team Identification on the NBA Dataset

#### Results

| layers            | acc    | hit@2  | hit@3  | game acc |
|-------------------|--------|--------|--------|----------|
| 2conv             | 10.68% | 18.09% | 24.31% | 50.00%   |
| $3 \mathrm{conv}$ | 18.86% | 28.89% | 36.47% | 87.05%   |
| 4conv             | 22.34% | 33.03% | 40.47% | 93.41%   |
| $5 \mathrm{conv}$ | 24.78% | 35.61% | 42.95% | 95.91%   |
| 5conv $+2$ fc     | 25.08% | 35.83% | 42.85% | 94.32%   |

### Shot location Prediction

- Task: Predict where the next shot will take
  place
- Input: A sequence of 2D positions of 10 players and the ball in the court coordinates.
- Output: A distribution over shooting zones; A cell where the next shot will most likely take place
- This discretization is commonly used for analyzing hot shooting zones



### Result

Accuracy



Distance from current frame to the last frame

### Show video

- Predict next activity
  - When
  - Where
  - What





### Conclusion

Methods for handling structures in deep networks

Label structure: message passing algorithms for multi-level image/video labeling; purely from image data or with partial labels

Temporal structure: action detection in time; efficient glimpsing of video frames

Group structure: network structures to connect related people, gating functions or modules for reasoning about relations
