Structured Deep Learning of Human Motion

Christian Wolf

Fabien Baradel

Natalia Neverova Julien Mille Graham W. Taylor Greg Mori

Deep Learning of Human Motion

Recognition of group activities

Pose estimation

2 Conta_ INSA di _ unis @

[Neverova, Wolf, Taylor, Nebout. CVIU 2017]

Combining real and simulated data

Joint positions (NYU Dataset)

Synthetic data (part segmentation)

Natalia Neverova Phd @ LIRIS, Now at Facebook

Christian Wolf LIRIS INSA-Lyon

Graham W. Taylor University of Guelph Canada

Florian Nebout Awabot

Semantic Segmentation with GridNetworks

Residual Conv-Deconv Grid Network for Semantic Segmentation

Damien Fourure, Rémi Emonet, Elisa Fromont, Damien Muselet, Alain Tremeau & Christian Wolf

BMVC 2017

Damien Fourure E. Fromont, R. Emonet, A. Trémeau, D. Muselet, C. Wolf

[Fourure, Emonet, Fromont, Muselet, Tremeau, Wolf, BMVC 2017]

Activity recognition

Unconstrained internet/youtube videos No acquisition

E.g. Youtube-8M dataset: 7M videos, 4716 classes, ~3.4 labels per video. > 1PB of data.

Videos with human activities, from youtube No acquisition E.g. ActivityNet/Kinetics dataset: ~300k video

E.g. ActivityNet/Kinetics dataset: ~300k videos, 400 classes.

Human activities shot with depth sensors Acquisition is time consuming!

E.g. NTU RGB-D dataset, MSR dataset, ChaLearn/Montalbano dataset, etc.

Deep Learning (Global)

(Mostly after 2012)

Deep Learning is mostly based on global models.

[Ji et al., ICML 2010]

[Carreira and Zisserman, CVPR 2017]

[Baccouche, Mamalet, Wolf, Garcia, Baskur, HBU 2011]

[Baccouche, Mamalet, Wolf, Garcia, Baskur, BMVC 2012]

The role of articulated pose

The role of articulated pose

Context

We need put attention to places which are not always determined by pose

Context

We need put attention to places which are not always determined by pose

Context

Frame from the NTU RGB-D Dataset

12 Carla_ INSA 🖓 🖬 yris 🖤

Local representations

(Before 2012)

Images, objects and activities have often been represented as collections of local features, e.g. through DPMs.

[Felzenszwalb et al., PAMI 2010]

$$\sum_{i=0}^{n} F'_{i} \cdot \phi(H, p_{i}) - \sum_{i=1}^{n} d_{i} \cdot \phi_{d}(dx_{i}, dy_{i}) + b,$$
Local appearance Deformation

Structured Deep Learning

Human attention: gaze patterns

[Johansson, Holsanova, Dewhurst, Holmqvist, 2012]

[Mnih et al., NIPS 2015]

[Song et al., AAAI 2016]

16 Carla_ INSA at LIRIS @

(Before 2012)

Deep Learning (Global) Deep Learning (attention maps)

(Mostly after 2012) (~2016)

Deep Learning (Local representations)

Objective: fully trainable high-capacity local representations

- 1. Learn where to attend
- 2. Learn how to track attended points
- 3. Learn how to recognize from a local distributed representation

[Baradel, Wolf, Mille, Taylor, CVPR 2018]

Attention in feature space

[Baradel, Wolf, Mille, Taylor, CVPR 2018]

Unconstrained differentiable attention

$$\boldsymbol{l}_g = W_l^{\top} [\boldsymbol{h}_g, \boldsymbol{c}_t]$$

Hidden state from recurrent recognizers (workers)

"Differentiable crop » (Spatial Transformer Network) Frame context

[Baradel, Wolf, Mille, Taylor, CVPR 2018] 19 *Carría* INSA CIUS LIRIS (****

Distributed recognition

20 Carla_ INSA city unis 🖤

Results

21 Carla_ INSA 🖓 🔤 Linis 🖤

State-of-the-art comparaison

Methods	Pose	RGB	CS	CV	Avg
Lie Group [40]	\checkmark	-	50.1	52.8	51.5
Skeleton Quads [10]	\checkmark	-	38.6	41.4	40.0
Dynamic Skeletons [14]	\checkmark	-	60.2	65.2	62.7
HBRNN [9]	\checkmark	-	59.1	64.0	61.6
Deep LSTM [32]	\checkmark	-	60.7	67.3	64.0
Part-aware LSTM [32]	\checkmark	-	62.9	70.3	66.6
ST-LSTM + TrustG. [26]	\checkmark	-	69.2	77.7	73.5
STA-LSTM [35]	\checkmark	-	73.2	81.2	77.2
Ensemble TS-LSTM [24]	\checkmark	-	74.6	81.3	78.0
GCA-LSTM [27]	\checkmark	-	74.4	82.8	78.6
JTM [41]	\checkmark	-	76.3	81.1	78.7
MTLN [18]	\checkmark	-	79.6	84.8	82.2
VA-LSTM [47]	\checkmark	-	79.4	87.6	83.5
View-invariant [28]	\checkmark	-	80.0	87.2	83.6
DSSCA - SSLM [33]	\checkmark	\checkmark	74.9	-	-
Hands Attention [5]	\checkmark	\checkmark	84.8	90.6	87.7
C3D†	-	\checkmark	63.5	70.3	66.9
Resnet50+LSTM [†]	-	\checkmark	71.3	80.2	75.8
Glimpse Clouds	-	\checkmark	86.6	93.2	89.9

Figure 1. Results on Northwestern-UCLA Multiview Action 3D, Cross-View (accuracy in %). V=Visual(RGB), D=Depth, P=Pose.

		* * 2	7 7 0	x r1	
Methods	Data	$V_{1,2}^{3}$	$V_{1,3}^2$	$V_{2,3}^{_{1}}$	Avg
DVV [5]	D	58.5	55.2	39.3	51.0
CVP [11]	D	60.6	55.8	39.5	52.0
AOG [10]	D	45.2	-	-	-
HPM+TM [8]	D	91.9	75.2	71.9	79.7
Lie group [9]	Р	74.2	-	-	-
HBRNN-L [1]	Р	78.5	-	-	-
Enhanced viz. [6]	Р	86.1	-	-	-
Ensemble TS-LSTM [3]	Р	89.2	-	-	-
Hankelets [4]	V	45.2	-	-	-
nCTE [2]	v	68.6	68.3	52.1	63.0
NKTM [7]	V	75.8	73.3	59.1	69.4
Global model	V	85.6	84.7	79.2	83.2
Glimpse Clouds	V	90.1	89.5	83.4	87.6

Table 1. Results on the NTU RGB+D dataset with Cross-Subject and Cross-View settings (accuracies in %); († indicates method has been re-implemented).

SOTA results on two datasets NTU and N-UCLA Larger difference between Glimpse clouds and global model on N-UCLA

[Baradel, Wolf, Mille, Taylor, CVPR 2018]

Ablation study

Glimpse	Type of attention	CS	CV	Avg
3D tubes	Attention	85.8	92.7	89.2
Seq. 2D	Random sampling	80.3	87.8	84.0
Seq. 2D	Saliency	86.2	92.9	89,5
Seq. 2D	Attention	86.6	93.2	89.9

Table 3. Results on the NTU: different attention and alternative strategies.

Methods	L_D	L_P	L_G	CS	CV	Avg
Global model	\checkmark	-	-	84.5	91.5	88.0
Global model	\checkmark	\checkmark	-	85.5	92.1	88.8
Glimpse Clouds	\checkmark	-	-	85.7	92.5	89.1
Glimpse Clouds	\checkmark	\checkmark	-	86.4	93.0	89.7
Glimpse Clouds	\checkmark	-	\checkmark	86.1	92.9	89.5
Glimpse Clouds	\checkmark	\checkmark	\checkmark	86.6	93.2	89.9

Table 1. Results on NTU: ablation study

Methods	Global model	Spatial Attention	Soft Workers	Loss on Pose	CS	CV	Avg
Global model only	\checkmark	-	-	-	84.5	91.5	88.0
Global model only	\checkmark	-	-	\checkmark	85.5	92.2	88.8
\sum Glimpses + GRU	-	\checkmark	-	\checkmark	85.8	92.4	89.1
Glimpse clouds	-	\checkmark	\checkmark	\checkmark	86.6	93.2	89.9
Glimpse clouds + Global model	-	\checkmark	\checkmark	\checkmark	86.6	93.2	89.9

Table 2. Results on NTU: ablation study.

[Baradel, Wolf, Mille, Taylor, CVPR 2018]

Pose conditioned attention

[Baradel, Wolf, Mille, Taylor, BMVC 2018]

AI vs. NI

Prize share: 1/4

Photo: A. Mahmoud Edvard I. Moser Prize share: 1/4

2014 Nobel Prize in Medecine

Head direction

Border cells

AI vs. NI

2014 Nobel Prize in Medecine

Photo: A. Mahmoud May-Britt Moser Prize share: 1/4

Photo: A. Mahmoud Edvard I. Moser Prize share: 1/4

Speed cells are necessary for updating the grid pattern in accordance with the animal's movement (distance=speed x time)

Al vs. NI

2018 : discoverty of the same cells in neural networks trained on similar tasks.

[Cueva, Wei, ICLR 2018]

27 Carla_ INSA ala Linis @

AI vs. NI

Emergence of the different types of cells in the same order.

Reasoning : what happened?

Human psychology

- Daniel Kahnemann (Nobel prize in 2002)
- Book: "Thinking Fast and Slow"

Cognitive tasks

24*17 = ?

Two systems

System 1

- Continuously monitors environment (and mind)
- No specific attention
- Continuously generates assessments / judgments w/o efforts, even in the presence of low data. Jumps to conclusions
- Prone to errors. No capabilities for statistics

System 2

- Receives questions or generates them
- Directs attention and searches memory to find answers
- Requires (eventually a lot of) effort
- More reliable

Where is ML today?

Claim: AI requires a combination of

- Extraction of high-level information from highdimensional input (visual, audio, language): machine learning
- High-level reasoning: compare, assess, focus attention, perform logical deductions

33 Carla INSA di LIRISO

Object level Visual Reasoning

[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]

Fabien Baradel Phd @ LIRIS, INSA-Lyon

Natalia Neverova Facebook Al Research, Paris Christian Wolf INRIA Chroma

Julien Mille LI, INSA VdL

Greg Mori Simon Fraser University, Canada

Object level Visual Reasoning

tilting something with something on it until it falls off (SS)

[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]

hand-bed interaction (VLOG)

Object level Visual Reasoning

[Baradel, Neverova, Wolf, Mille, Mori, ECCV 2018]

36 Conta INSA City unis 🖤

Learned interactions

Class: person-book interaction

Failure cases

Confusion between semantically similar objects

prediction of hand-cup-contact instead of hand-glass-contact

Small size object hand-cell-phone contact not detected

Results

Methods	Top1	R50 [45]	40.5	Methods	Top1
C3D + Avg [5]	21.50	I3D [3]	39.7	R18 [44]* I3D-18 [3]*	$32.05 \\ 34.20$
I3D [5] MultiScale TRN [3]	27.63 9] 33.60	Ours	41.7	Ours	40.89
Ours	34.32				

Something-something dataset

VLOG dataset EPIC Kitchen dataset

	Nb. 1	head 2	Obje Pixel	ct type COCO	f RNN	φ MLP	Pairwise relations	R VLOG	esults Something
Baseline	-	-	-	-	-	-	-	29.92	33.43
Variant 1	\checkmark	-	-	\checkmark	\checkmark	-	\checkmark	32.01	35.09
Variant 2	-	\checkmark	1	-	\checkmark	-	\checkmark	31.36	35.15
Variant 3	-	\checkmark	-	\checkmark	-	\checkmark	\checkmark	32.38	34.15
Variant 4	-	\checkmark	-	\checkmark	\checkmark	-	-	31.82	34.65
Ours	-	\checkmark	-	\checkmark	√	-	√	33.75	36.12

Conclusion

- We propose a models which recognize activities from
 - a cloud of unconstrained feature points
 - Interactions between spatially well defined objects
- Visual spatial attention is useful and competitive compared to pose
- State of the art performance on 5 datasets (NTU RGB-D, Northwestern UCLA, VLOG, Something-Something, Epic Kitchen)
- Reasoning is key component of human cognition, also important for IA systems

