
From Design to Search in High-Dimensional Spaces

Graham Taylor 
University of Guelph, Vector Institute for Artificial Intelligence and Canadian Institute for Advanced Research

Letter Field by Judson Rosebush, 1978

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 2

Research group: MLRG @ U of G

DL

Algorithms &
Architectures

Applications Acceleration

Sequence 
Modeling

Generative  
Models

GPU FPGAVision

Plants

People

Animals

MLRG @ U Guelph

DL

Algorithms &
Architectures

Applications Acceleration

Sequence 
Modeling

Generative  
Models

GPU FPGAVision

Plants

People

Animals

MLRG @ U Guelph

via Google

via Clement Farabet

2.0

via Clement Farabet

via Clement Farabet

via wired.com

https://www.wired.com/2012/10/ff-inside-google-data-center/

Additive 
Manufacturing

Design as a
Search

Additive 
Manufacturing

Design as a
Search

Additive 
Manufacturing

Design as a
Search

Optimization
& Learning

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 17

via Bloomberg

Optimization vs. Learning

via Yuejie Chi

Optimization in Machine Learning

GoogLeNet (circa 2014)

Parameter search:
• Knobs inside the boxes
• 100M - 1B parameters
• Core of ML

Model search:
• Typically fixed architecture
• 10 - 100* hyperparameters
• Traditionally a human task

1M

1k

100M

1M

10T

1B

flop/s

capacity

data

tim
e

time

As time goes by, we get more data and
more flops/s. The capacity of ML
models should grow accordingly.

inspired by Marc’Aurelio Ranzato

via NVIDIA

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 23

Saturation?

Eugenio Culurciello’s blog:
https://culurciello.github.io/tech/2016/06/04/nets.html

https://culurciello.github.io/tech/2016/06/04/nets.html

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 24

• Romanticized
notion of DL - end of
feature engineering

• Feature engineering
has decreased

• Architectures have
become more
complex

Learning architectures

http://smerity.com/articles/2016/architectures_are_the_new_feature_engineering.html

http://smerity.com/articles/2016/architectures_are_the_new_feature_engineering.html

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 25

Example: Learning Multimodal
Fusion for Gesture Recognition

Neverova, Wolf, Taylor (2016)

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 26

• Placeholder

Early vs. late fusion
Early Fusion Late Fusion

RGB Depth Mocap Audio

Fuse modalities at input 
 (or preprocessed feature) level

RGB Depth Mocap Audio

Fuse modalities at output level

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 27

A multi-scale architecture
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Fig. 2. The deep convolutional multi-modal architecture operating at 3 temporal scales corresponding to dynamic
poses of 3 different durations. Although the audio modality is not present in the 2014 ChaLearn Looking at
People Challenge dataset, we have conducted additional experiments by augmenting the visual signal with audio
recordings from the 2013 version of the data.

of kernels may reach the same performance while being
orders of magnitude faster.

In [43] the authors propose a late fusion strategy com-
pensating for errors of individual classifiers by minimising
the rank of a score matrix, and in a follow up work [44]
identify sample-specific optimal fusion weights by enforc-
ing similarity in fusion scores for visually similar labeled
and unlabelled samples. Xu et al. introduced the Feature
Weighting via Optimal Thresholding (FWOT) algorithm
[45] jointly optimising feature weights and thresholds. In
[46] MKL-based combinations of features act together with
Bayesian model combination and weighted average fusion
of scores from multiple systems.

A number of deep architectures have recently been pro-
posed specifically for multi-modal data. Ngiam et al. [47]
employ sparse RBMs and bimodal deep antoencoders for
learning cross-modality correlations in the context of audio-
visual speech classification of isolated letters and digits.
Srivastava et al. [48] use a multi-modal deep Boltzmann
machine in a generative fashion to tackle the problem
of integrating image data and text annotations. Kahou et
al. [7] won the 2013 Emotion Recognition in the Wild
Challenge by building two convolutional architectures on
several modalities, such as facial expressions from video
frames, audio signal, scene context and features extracted
around mouth regions. Finally, in [49] the authors propose
a multi-modal convolutional network for gesture detection
and classification from a combination of depth, skeletons
and audio.

3 GESTURE CLASSIFICATION

On a dataset such as ChaLearn 2014, we face several
key challenges: learning representations at multiple spatial
and temporal scales, integrating the various modalities, and
training a complex model when the number of labeled
examples is not at web-scale like static image datasets
(e.g. [3]). We start by describing how the first two chal-
lenges are overcome at an architectural level. Our training
strategy to overcome the last challenge is described in
Sec. 4.

Our proposed multi-scale deep neural model consists
of a combination of single-scale paths connected in a
parallel way (see Fig. 2). Each path independently learns
a representation and performs gesture classification at its
own temporal scale given input from RGB-D video and
articulated pose descriptors (audio channel can be also
added, if available). Predictions from all paths are then
aggregated through additive late fusion. This strategy allows
us to first extract the most salient (in a discriminative sense)
motions at a fine temporal resolution and, at the same time,
consider them in the context of global gesture structure,
smoothing and compensating for per-block errors typical
for a given gesture class.

To differentiate among temporal scales, a notion of
dynamic pose is introduced. By dynamic pose we mean a
sequence of video frames, synchronized across modalities,
sampled at a given temporal step s and concatenated to
form a spatio-temporal 3d volume. Varying the value of s

allows the model to leverage multiple temporal scales for
prediction, thereby accommodating differences in tempos
and styles of articulation of different users. Our model is
therefore different from the one proposed in [4], where by

Operates at 3 temporal scales  
corresponding to dynamic poses of 3 different durations

(see next slide for detail)

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 28

Single-scale deep architecture

HLV2

ConvD2

ConvD1

ConvC1

ConvC1 ConvC2

ConvC2

max pooling ConvD2

ConvD1

HLV1

shared hidden layer

 HLS

HLV1

HLV2

output layer

HLA2

HLM3HLM2

depth video,

Path V1:

right hand

HLM1

ConvA1 HLA1

intensity video,
right hand

Path V1:

Path V2:

left hand
depth video,

left hand
intensity video,

Path V2:

Path M:
mocap stream

Path A:
audio stream

mel frequency

spectrograms

pose feature

extractor

Neverova, Wolf, Taylor (2016)

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 29

Error evolution during iterative
training

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 30

Learning Fusion Architectures (1)

Modality 1 Modality 2 Modality 3

Modality 1 Modality 2 Modality 3

Modality 1 Modality 2 Modality 3

Modality 1 Modality 2 Modality 3

Modality 1 Modality 2 Modality 3

Modality 1 Modality 2 Modality 3

Modality 1 Modality 2 Modality 3

Modality 1 Modality 2 Modality 3

Modality 1 Modality 2 Modality 3

Sheet1_2_3

Page 1

Sheet1_2_2

Page 5

Sheet1_2

Page 9

Three typical fusion architectures achievable by Modout, with
corresponding weight masks:

Independent Fused Fully-connected

Li, Neverova, Wolf, Taylor (2017)

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 31

Learning Fusion Architectures (2)

FC

FC

FC

FUSE

M1 M2

FUSE

M3

FC

FUSE

M4

FC

FC

OUT

FC

FC

FC

FUSE

M3 M4

FC

FUSE

FUSE

M1 M2

FC

FC

OUT

Ramachandram, Lisicki, Shields, Amer, Taylor (2018)

Applying Bayesian
Optimization to Search

Space Over Graphs

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 32

Learning Fusion Operators for VQA

Figure 2: MUTAN fusion scheme for global Visual QA. The prediction is modeled as a bilinear interaction between visual
and linguistic features, parametrized by the tensor T . In MUTAN, we factorise the tensor T using a Tucker decomposition,
resulting in an architecture with three intra-modal matrices Wq , Wv and Wo, and a smaller tensor T c. The complexity of
T c is controlled via a structured sparsity constraint on the slice matrices of the tensor.

for Visual QA [2]. We also show that MUTAN outperforms
MCB [5] and MLB [8] in the same setting, and that perfor-
mances can be further improved when combined with MLB,
validating the complementarity potential between the two
approaches.

3. MUTAN Model

Our method deals with the problem of Visual Question
Answering (VQA). In VQA, one is given a question q 2 Q
about an image v 2 I, and the goal is to provide a mean-
ingful answer. During training, we aim at learning a model
such that the predicted answer â matches the correct one a?.
More formally, denoting as ⇥ the whole set of parameters
of the model, the predicted output â can be written as:

â = argmax
a2A

p⇥ (a|v, q) (1)

The general architecture of the proposed approach is
shown in Figure 2. As commonly done in VQA, images
v and questions q are firstly embedded into vectors and
the output is represented as a classification vector y . In
this work, we use a fully convolutional neural network [6]
(ResNet-152) to describe the image content, and a GRU re-
current network [11, 4] for the question, yielding represen-
tations v 2 Rdv for the image and q 2 Rdq for the question.
Vision and language representations v and q are then fused
using the operator T (explained below) to produce a vector
y, providing (through a softmax function) the final answer
in Eq. (1). This global merging scheme is also embedded
into a visual attention-based mechanism [8] to provide our
final MUTAN architecture.

Fusion and Bilinear models The issue of merging visual
and linguistic information is crucial in VQA. Complex and
high-level interactions between textual meaning in the ques-
tion and visual concepts in the image have to be extracted
to provide a meaningful answer.

Bilinear models [5, 8] are recent powerful solutions to
the fusion problem, since they encode fully-parametrized
bilinear interactions between the vectors q and v:

y = (T ⇥1 q)⇥2 v (2)

with the full tensor T 2 Rdq⇥dv⇥|A|, and the operator ⇥i

designing the i-mode product between a tensor and a matrix
(here a vector).

Despite their appealing modeling power, fully-
parametrized bilinear interactions quickly become
intractable in VQA, because the size of the full tensor
is prohibitive using common dimensions for textual, visual
and output spaces. For example, with dv ⇡ dq ⇡ 2048 and
|A| ⇡ 2000, the number of free parameters in the tensor
T is ⇠ 1010. Such a huge number of free parameters
is a problem both for learning and for GPU memory
consumption1.

In MUTAN, we factorize the full tensor T using a
Tucker decomposition. We also propose to complete our
decomposition by structuring the second tensor T c (see
gray box in Fig. 2) in order to keep flexibility over the in-
put/output dimensions while keeping the number of param-
eters tractable.

3.1. Tucker decomposition

The Tucker decomposition [24] of a 3-way tensor
T 2 Rdq⇥dv⇥|A| expresses T as a tensor product between
factor matrices Wq,Wv and Wo, and a core tensor T c in
such a way that:

T = ((T c ⇥1 Wq)⇥2 Wv)⇥3 Wo (3)

with Wq 2 Rdq⇥tq , Wv 2 Rdv⇥tv and Wo 2 R|A|⇥to ,
and T c 2 Rtq⇥tv⇥to . Interestingly, Eq. (3) states that the

1A tensor with 8 billion float32 scalars approximately needs 32Go to
be stored, while top-grade GPUs hold about 24Go each.

⇥1

⇥2 �

Mr q̃� Nr ṽ

|
{z

}

Repeat

R times
⌃

q̃

Mr

ṽ

Nr

� Element-wise multiplication.

⌃ Element-wise sum.

�b Binary operator b.

q̃ q|Wq

ṽ v|Wv

Mr q̃

Nr ṽ

�

frv

frq

.

.

.
.
.
.

|
{z

}

Repeat

R times

�1

�2

�3

M
U
T
A
N

O
u
rs

Duke, Taylor (2018)

via Canadian Geographic

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 34

Design parameters:

• inner cylinder diameter

• outer cylinder diameter

• working head

• number of flights

• tilt angle of the screw

• pitch

• maximum fill of the bucket

Bayesian Optimization 
of Archimedes Screw Turbine

Partially Full
"Bucket"

h

h

N

fmax

Di

Do

�

⇤

Optimized for power output / mass of steel

Lisicki, Lubitz, Taylor (2016)

Lisicki, Lubitz, Taylor (2016)

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 36

Meta-learning: Architecture

Under review as a conference paper at ICLR 2017

the section, we will focus on generating recurrent architectures, which is another key contribution
of our paper.

3.1 GENERATE MODEL DESCRIPTIONS WITH A CONTROLLER RECURRENT NEURAL
NETWORK

In Neural Architecture Search, we use a controller to generate architectural hyperparameters of
neural networks. To be flexible, the controller is implemented as a recurrent neural network. Let’s
suppose we would like to predict feedforward neural networks with only convolutional layers, we
can use the controller to generate their hyperparameters as a sequence of tokens:

Figure 2: How our controller recurrent neural network samples a simple convolutional network. It
predicts filter height, filter width, stride height, stride width, and number of filters for one layer and
repeats. Every prediction is carried out by a softmax classifier and then fed into the next time step
as input.

In our experiments, the process of generating an architecture stops if the number of layers exceeds
a certain value. This value follows a schedule where we increase it as training progresses. Once the
controller RNN finishes generating an architecture, a neural network with this architecture is built
and trained. At convergence, the accuracy of the network on a held-out validation set is recorded.
The parameters of the controller RNN, ✓c, are then optimized in order to maximize the expected
validation accuracy of the proposed architectures. In the next section, we will describe a policy
gradient method which we use to update parameters ✓c so that the controller RNN generates better
architectures over time.

3.2 TRAINING WITH REINFORCE

The list of tokens that the controller predicts can be viewed as a list of actions a1:T to design an
architecture for a child network. At convergence, this child network will achieve an accuracy R on
a held-out dataset. We can use this accuracy R as the reward signal and use reinforcement learning
to train the controller. More concretely, to find the optimal architecture, we ask our controller to
maximize its expected reward, represented by J(✓c):

J(✓c) = EP (a1:T ;✓c)[R]

Since the reward signal R is non-differentiable, we need to use a policy gradient method to iteratively
update ✓c. In this work, we use the REINFORCE rule from Williams (1992):

5✓cJ(✓c) =
TX

t=1

EP (a1:T ;✓c)

⇥
5✓c logP (at|a(t�1):1; ✓c)R

⇤

An empirical approximation of the above quantity is:

1

m

mX

k=1

TX

t=1

5✓c logP (at|a(t�1):1; ✓c)Rk

Where m is the number of different architectures that the controller samples in one batch and T is
the number of hyperparameters our controller has to predict to design a neural network architecture.

3

Under review as a conference paper at ICLR 2017

NEURAL ARCHITECTURE SEARCH WITH
REINFORCEMENT LEARNING

Barret Zoph⇤, Quoc V. Le
Google Brain
{barretzoph,qvl}@google.com

ABSTRACT

Neural networks are powerful and flexible models that work well for many diffi-
cult learning tasks in image, speech and natural language understanding. Despite
their success, neural networks are still hard to design. In this paper, we use a re-
current network to generate the model descriptions of neural networks and train
this RNN with reinforcement learning to maximize the expected accuracy of the
generated architectures on a validation set. On the CIFAR-10 dataset, our method,
starting from scratch, can design a novel network architecture that rivals the best
human-invented architecture in terms of test set accuracy. Our CIFAR-10 model
achieves a test error rate of 3.65, which is 0.09 percent better and 1.05x faster than
the previous state-of-the-art model that used a similar architectural scheme. On
the Penn Treebank dataset, our model can compose a novel recurrent cell that out-
performs the widely-used LSTM cell, and other state-of-the-art baselines. Our cell
achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplex-
ity better than the previous state-of-the-art model. The cell can also be transferred
to the character language modeling task on PTB and achieves a state-of-the-art
perplexity of 1.214.

1 INTRODUCTION

The last few years have seen much success of deep neural networks in many challenging appli-
cations, such as speech recognition (Hinton et al., 2012), image recognition (LeCun et al., 1998;
Krizhevsky et al., 2012) and machine translation (Sutskever et al., 2014; Bahdanau et al., 2015; Wu
et al., 2016). Along with this success is a paradigm shift from feature designing to architecture
designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to AlexNet (Krizhevsky
et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), and
ResNet (He et al., 2016a). Although it has become easier, designing architectures still requires a
lot of expert knowledge and takes ample time.

Figure 1: An overview of Neural Architecture Search.

This paper presents Neural Architecture Search, a gradient-based method for finding good architec-
tures (see Figure 1) . Our work is based on the observation that the structure and connectivity of a

⇤Work done as a member of the Google Brain Residency program (g.co/brainresidency.)

1

ar
X

iv
:1

61
1.

01
57

8v
2

 [c
s.L

G
]

15
 F

eb
 2

01
7

via Zoph and Le (2017)

Recurrent neural network (RNN) controller outputs architecture as string

RNN controller trained with reinforcement learning

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 37

Discovered CNN Architecture

via Zoph and Le (2017)

Under review as a conference paper at ICLR 2017

A APPENDIX

Figure 7: Convolutional architecture discovered by our method, when the search space does not
have strides or pooling layers. FH is filter height, FW is filter width and N is number of filters. Note
that the skip connections are not residual connections. If one layer has many input layers then all
input layers are concatenated in the depth dimension.

15

Under review as a conference paper at ICLR 2017

64]. For strides, we perform two sets of experiments, one where we fix the strides to be 1, and one
where we allow the controller to predict the strides in [1, 2, 3].

Training details: The controller RNN is a two-layer LSTM with 35 hidden units on each layer.
It is trained with the ADAM optimizer (Kingma & Ba, 2015) with a learning rate of 0.0006. The
weights of the controller are initialized uniformly between -0.08 and 0.08. For the distributed train-
ing, we set the number of parameter server shards S to 20, the number of controller replicas K to
100 and the number of child replicas m to 8, which means there are 800 networks being trained on
800 GPUs concurrently at any time.

Once the controller RNN samples an architecture, a child model is constructed and trained for 50
epochs. The reward used for updating the controller is the maximum validation accuracy of the last
5 epochs cubed. The validation set has 5,000 examples randomly sampled from the training set,
the remaining 45,000 examples are used for training. The settings for training the CIFAR-10 child
models are the same with those used in Huang et al. (2016a). We use the Momentum Optimizer
with a learning rate of 0.1, weight decay of 1e-4, momentum of 0.9 and used Nesterov Momentum
(Sutskever et al., 2013).

During the training of the controller, we use a schedule of increasing number of layers in the child
networks as training progresses. On CIFAR-10, we ask the controller to increase the depth by 2 for
the child models every 1,600 samples, starting at 6 layers.

Results: After the controller trains 12,800 architectures, we find the architecture that achieves the
best validation accuracy. We then run a small grid search over learning rate, weight decay, batchnorm
epsilon and what epoch to decay the learning rate. The best model from this grid search is then run
until convergence and we then compute the test accuracy of such model and summarize the results
in Table 1. As can be seen from the table, Neural Architecture Search can design several promising
architectures that perform as well as some of the best models on this dataset.

Model Depth Parameters Error rate (%)
Network in Network (Lin et al., 2013) - - 8.81
All-CNN (Springenberg et al., 2014) - - 7.25
Deeply Supervised Net (Lee et al., 2015) - - 7.97
Highway Network (Srivastava et al., 2015) - - 7.72
Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37

FractalNet (Larsson et al., 2016) 21 38.6M 5.22
with Dropout/Drop-path 21 38.6M 4.60

ResNet (He et al., 2016a) 110 1.7M 6.61

ResNet (reported by Huang et al. (2016c)) 110 1.7M 6.41

ResNet with Stochastic Depth (Huang et al., 2016c) 110 1.7M 5.23
1202 10.2M 4.91

Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81
28 36.5M 4.17

ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46
1001 10.2M 4.62

DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4.10
DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 3.74
DenseNet-BC (L = 100, k = 40) Huang et al. (2016b) 190 25.6M 3.46

Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50
Neural Architecture Search v2 predicting strides 20 2.5M 6.01
Neural Architecture Search v3 max pooling 39 7.1M 4.47
Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65

Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10.

7

Error rate on CIFAR

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 38

Learns RNN CellsUnder review as a conference paper at ICLR 2017

Figure 5: An example of a recurrent cell constructed from a tree that has two leaf nodes (base 2)
and one internal node. Left: the tree that defines the computation steps to be predicted by controller.
Center: an example set of predictions made by the controller for each computation step in the tree.
Right: the computation graph of the recurrent cell constructed from example predictions of the
controller.

according to the predictions of the controller RNN in this example, the following computation steps
will occur:

• The controller predicts Add and Tanh for tree index 0, this means we need to compute
a0 = tanh(W1 ⇤ xt +W2 ⇤ ht�1).

• The controller predicts ElemMult and ReLU for tree index 1, this means we need to
compute a1 = ReLU

�
(W3 ⇤ xt)� (W4 ⇤ ht�1)

�
.

• The controller predicts 0 for the second element of the “Cell Index”, Add and ReLU for
elements in “Cell Inject”, which means we need to compute anew0 = ReLU(a0 + ct�1).
Notice that we don’t have any learnable parameters for the internal nodes of the tree.

• The controller predicts ElemMult and Sigmoid for tree index 2, this means we need to
compute a2 = sigmoid(anew0 � a1). Since the maximum index in the tree is 2, ht is set to
a2.

• The controller RNN predicts 1 for the first element of the “Cell Index”, this means that we
should set ct to the output of the tree at index 1 before the activation, i.e., ct = (W3 ⇤xt)�
(W4 ⇤ ht�1).

In the above example, the tree has two leaf nodes, thus it is called a “base 2” architecture. In our
experiments, we use a base number of 8 to make sure that the cell is expressive.

4 EXPERIMENTS AND RESULTS

We apply our method to an image classification task with CIFAR-10 and a language modeling task
with Penn Treebank, two of the most benchmarked datasets in deep learning. On CIFAR-10, our
goal is to find a good convolutional architecture whereas on Penn Treebank our goal is to find a good
recurrent cell. On each dataset, we have a separate held-out validation dataset to compute the reward
signal. The reported performance on the test set is computed only once for the network that achieves
the best result on the held-out validation dataset. More details about our experimental procedures
and results are as follows.

4.1 LEARNING CONVOLUTIONAL ARCHITECTURES FOR CIFAR-10

Dataset: In these experiments we use the CIFAR-10 dataset with data preprocessing and aug-
mentation procedures that are in line with other previous results. We first preprocess the data by
whitening all the images. Additionally, we upsample each image then choose a random 32x32 crop
of this upsampled image. Finally, we use random horizontal flips on this 32x32 cropped image.

Search space: Our search space consists of convolutional architectures, with rectified linear units
as non-linearities (Nair & Hinton, 2010), batch normalization (Ioffe & Szegedy, 2015) and skip
connections between layers (Section 3.3). For every convolutional layer, the controller RNN has to
select a filter height in [1, 3, 5, 7], a filter width in [1, 3, 5, 7], and a number of filters in [24, 36, 48,

6

via Zoph and Le (2017)

Under review as a conference paper at ICLR 2017

Figure 8: A comparison of the original LSTM cell vs. two good cells our model found. Top left:
LSTM cell. Top right: Cell found by our model when the search space does not include max and
sin. Bottom: Cell found by our model when the search space includes max and sin (the controller
did not choose to use the sin function).

16

Under review as a conference paper at ICLR 2017

Figure 8: A comparison of the original LSTM cell vs. two good cells our model found. Top left:
LSTM cell. Top right: Cell found by our model when the search space does not include max and
sin. Bottom: Cell found by our model when the search space includes max and sin (the controller
did not choose to use the sin function).

16

Under review as a conference paper at ICLR 2017

Figure 8: A comparison of the original LSTM cell vs. two good cells our model found. Top left:
LSTM cell. Top right: Cell found by our model when the search space does not include max and
sin. Bottom: Cell found by our model when the search space includes max and sin (the controller
did not choose to use the sin function).

16

Writing RNN cells as strings

LSTM cell Found cell (no max or sin) Found cell (max, sin included)

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 39

Meta-learning: Optimizer Design
Neural Optimizer Search with Reinforcement Learning

Figure 2. Computation graph of some commonly used optimizers: SGD, RMSProp, Adam. Here, we show the computation of Adam in
1 step and 2 steps. Blue boxes correspond to input primitives or temporary outputs, yellow boxes are unary functions and gray boxes
represent binary functions. g is the gradient, m̂ is the bias-corrected running estimate of the gradient, and v̂ is the bias-corrected running
estimate of the squared gradient.

Figure 3. Overview of the controller RNN. The controller iteratively selects subsequences of length 5. It first selects the 1st and 2nd
operands op1 and op2, then 2 unary functions u1 and u2 to apply to the operands and finally a binary function b that combines the
outputs of the unary functions. The resulting b(u1(op1), u2(op2)) then becomes an operand that can be selected in the subsequent group
of predictions, or becomes the update rule. Every prediction is carried out by a softmax classifier and then fed into the next time step as
input.

With a limited number of iterations, our DSL can only rep-
resent a subset of all mathematical equations. However we
note that it can represent common optimizers within one
iteration assuming access to simple primitives. Figure 2
shows how some commonly used optimizers can be rep-
resented in the DSL. We also note that multiple strings in
our prediction scheme can map to the same underlying up-
date rule, including strings of different lengths (c.f. the two
representations of Adam in Figure 2). This is both a fea-
ture of our action space corresponding to mathematical ex-
pressions (addition and multiplication are commutative for
example) and our choice of DSL.

3.2. Controller optimization with policy gradients

Our controller is implemented as a Recurrent Neural Net-
work which samples strings of length 5n where n is a num-
ber of iterations fixed during training (see Figure 3). Since
the operand bank grows as more iterations are computed,
we use different softmax weights at every step of predic-
tion.

The controller is trained to maximize the performance of
its sampled update rules on a specified model. The training

objective is formulated as follows:

J(✓) = E�⇠p✓(.)[R(�)] (1)

where R(�) corresponds to the accuracy on a held-out val-
idation set obtained after training a target network with up-
date rule �.

Zoph & Le (2017) train their controller using a vanilla pol-
icy gradient obtained via REINFORCE (Williams, 1992),
which is known to exhibit poor sample efficiency. We find
that using the more sample efficient Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) algorithm speeds
up convergence of the controller. For the baseline function
in PPO, we use a simple exponential moving average of
previous rewards.

3.3. Accelerated Training

To further speed up the training of the controller RNN, we
employ a distributed training scheme. In our distributed
training scheme the samples generated from the controller
RNN are added to a queue, and run on a set of distributed

Neural Optimizer Search with Reinforcement Learning

Figure 2. Computation graph of some commonly used optimizers: SGD, RMSProp, Adam. Here, we show the computation of Adam in
1 step and 2 steps. Blue boxes correspond to input primitives or temporary outputs, yellow boxes are unary functions and gray boxes
represent binary functions. g is the gradient, m̂ is the bias-corrected running estimate of the gradient, and v̂ is the bias-corrected running
estimate of the squared gradient.

Figure 3. Overview of the controller RNN. The controller iteratively selects subsequences of length 5. It first selects the 1st and 2nd
operands op1 and op2, then 2 unary functions u1 and u2 to apply to the operands and finally a binary function b that combines the
outputs of the unary functions. The resulting b(u1(op1), u2(op2)) then becomes an operand that can be selected in the subsequent group
of predictions, or becomes the update rule. Every prediction is carried out by a softmax classifier and then fed into the next time step as
input.

With a limited number of iterations, our DSL can only rep-
resent a subset of all mathematical equations. However we
note that it can represent common optimizers within one
iteration assuming access to simple primitives. Figure 2
shows how some commonly used optimizers can be rep-
resented in the DSL. We also note that multiple strings in
our prediction scheme can map to the same underlying up-
date rule, including strings of different lengths (c.f. the two
representations of Adam in Figure 2). This is both a fea-
ture of our action space corresponding to mathematical ex-
pressions (addition and multiplication are commutative for
example) and our choice of DSL.

3.2. Controller optimization with policy gradients

Our controller is implemented as a Recurrent Neural Net-
work which samples strings of length 5n where n is a num-
ber of iterations fixed during training (see Figure 3). Since
the operand bank grows as more iterations are computed,
we use different softmax weights at every step of predic-
tion.

The controller is trained to maximize the performance of
its sampled update rules on a specified model. The training

objective is formulated as follows:

J(✓) = E�⇠p✓(.)[R(�)] (1)

where R(�) corresponds to the accuracy on a held-out val-
idation set obtained after training a target network with up-
date rule �.

Zoph & Le (2017) train their controller using a vanilla pol-
icy gradient obtained via REINFORCE (Williams, 1992),
which is known to exhibit poor sample efficiency. We find
that using the more sample efficient Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) algorithm speeds
up convergence of the controller. For the baseline function
in PPO, we use a simple exponential moving average of
previous rewards.

3.3. Accelerated Training

To further speed up the training of the controller RNN, we
employ a distributed training scheme. In our distributed
training scheme the samples generated from the controller
RNN are added to a queue, and run on a set of distributed

Domain-specific language (DSL) for optimizers

via Zoph and Le (2017)

RNN controller outputs optimizer as string

via medium.com

\

via NVIDIA

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 42

Evaluation?

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 43

Inception Score?

IS = 6.45 IS = 6.31

(Higher is better)

Im, Ma, Taylor, Branson (2018)

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 44

Gmail: Smart Compose

via Google

10 July 2018 /
Canada-France-Iceland･ Design to Search / G Taylor

 44

Gmail: Smart Compose

via Google

Additive 
Manufacturing

Design as a
Search

Optimization
& Learning

Additive 
Manufacturing

Design as a
Search

Optimization
& Learning

Evaluation

Additive 
Manufacturing

Design as a
Search

Optimization
& Learning

Evaluation

via nbww.com

Will Martin (U of Guelph)

